高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
二元硫化物作为热电材料
 从元素在地壳中的丰度,毒性和价格方面介绍硫化物作为热电材料的天然优势;从热电性能上分析了硫化物在热稳定性,载流子浓度的可调控性等方面的劣势;也总结了包括元素掺杂、微观结构调控等优化硫化物热电材料的方法;最后提出了硫化物潜在的研究方向和可能的优化硫化物热电材料性能的新方法。
南方科技大学 2021-04-13
发现高性能AgBiSe2基热电材料
热电效应(Thermoelectric Effects)提供了一种在热能和电能之间直接转化的手段,在现今世界能源和环境问题的背景下,热电效应作为一种清洁有效的能源转化方式而受到广泛关注。相比于传统的热电材料,I−V−VI2 (I=Ag; V=Sb, Bi; and VI=S, Se, Te)型半导体由于本征的极低晶格热导率而成为具有良好潜力的热电材料体系。尽管AgSbTe2是其中最为广泛研究的材料,但是由于其制备需要大量丰度较低的元素碲(Tellurium),且热稳定性较差,因而人们希望用更加廉价和稳定的AgBiSe2来代替。之前对于AgBiSe2的研究,主要集中在通过对其进行元素掺杂优化载流子浓度这一方面,而本文指出通过将AgBiSe2与AgBiS2复合,使用球磨的方法使两相完全固溶,可以更进一步降低材料的晶格热导率。结果显示,材料的热导率在773K温度下,从原本的~0.5 W/mK降低到了0.33 W/mK,成为这个体系到目前为止报道的最低的热导率。结合电性能用铟掺杂改性,最终,该材料在773K时的最高ZT值到达了0.9,与该体系之前取得的最高ZT相近,是本征AgBiSe2的2.5倍左右(如图所示)。这种运用球磨实现多相固溶以降低晶格热导率的方法,也为其他体系热电材料的相关研究指出了一个值得尝试的方向。
南方科技大学 2021-04-13
新型太阳能光伏热电联产技术
北京工业大学 2021-04-14
新型太阳能光伏热电联产技术
北京工业大学 2021-04-14
刚性Mg基新型室温热电材料方面
该研究详细阐述了由于实空间中Mg-Mg化学键构成的电子输运通道远离阴离子位置,使Mg3Sb2-yBiy材料体系中合金化原子散射声子降低晶格热导率的同时对电子散射较弱,有利于实现电热输运的解耦与分别调控(如图1)。最终,研究成功实现Mg3Sb2-yBiy材料体系室温功率因子的进一步提升,并在Mg3+δSb1.0Bi1.0:Mn0.01材料中实现室温下
南方科技大学 2021-04-14
BKTEM-Dx全自动热电性能分析系统
产品详细介绍BKTEM-Dx全自动热电性能分析系统关键词:热电材料,Seebeck系数,电导率, 电阻率,V-1装置产品介绍:     BKTEM-Dx热电性能分析系统是一款全新的自动化热电赛贝克系数测试仪,该仪器实现了一体化设计,无需手动,电脑软件上可以直接抽真空,设置温度,只要将样品装上之后,实现一键式的测量,电阻率及各个表格能够直观出现,其测试性能远超越国内外热电材料测试仪,不仅可以用于块体材料同时也可以用于薄材料的测试,是目前国内高等院校和材料研究所的重要设备。对于热电材料的研究,热电性能测试是不可或缺的试验数据。BKTEM-Dx(x=1,2,3)系列可以精确地测定半导体材料、金属材料及其他热电材料(Bi2Te3, PbTe, Skutterudites等)及薄膜材料的Seebeck系数及电导率。主要原理和特点如下: 该装置由高精度,高灵敏度温度可控的电阻炉和控制温度用的微型加热源构成。通过PID程序控温,采用四点法的方式精确测定半导体材料及热电材料的Seebeck系数及电导率、电阻率。试样与引线的接触是否正常V-1装置可以自动检出,自动出来测试数据和测试报告。一、适用范围:1、精确地测定半导体材料、金属材料及其他热电(Bi2Te3,PbTe,Skutterudites康铜、镍、钨等金属,Te、Bi2Te3、ZrNiSn、ZnAgSb、NiMoSb、SnTe、FeNbSb、CuGaTe2、GeTe、Ag1-xCuS、Cu2ZnSnSe4等)的Seebeck系数及电导率、电阻率。3、块体和薄膜材料测均可以测试。4、试样与引线的接触是否正常V-1装置可以自动检出。5、拥有自身专利分析软件,独立分析,过程自动控制,界面友好。6、国内高等院校材料系研究或是热电材料生产单位。7、汽车和燃油、能源利用效率、替代能源领域、热电制冷.8、很多其他工业和研究领域-每年都会诞生新的应用领域。二、技术特点:      一体化设计,所有参数直接在电脑上操作,无须人工干预·解决高温下温控精度不准的问题,静态法测量更加直观的了解产品热电材料的真正表征物理属性。温度检测可采用J、K型热电偶,降低测试成本。·试样采用独特的焊偶机构,保证接触电阻最小以及测量结果的高重现性。每次可测试1-3个样品.采用高级数据采集技术,避免电路板数据采集技术带来的干扰误差,可控温场下同步测量赛贝克系数和电阻率。 采用原装进口的采集仪,测试报告自动生成。三:主要技术:测量温度:室温-600℃,800℃,1200℃ 可选同时测试样品数量:1个,2个,3个 可选控温精度:0.5K(温度波动:≤±0.1℃)升温速率:0.01 –100K/min,极大得提高测试时间测量原理:塞贝克系数:静态直流电;电阻系数:四端法测量范围:塞贝克系数:0.5μV/K_25V/K;电阻系数:0.2Ohm-2.5KOhm分辨率:塞贝克系数:10nV/K;电阻系数: 10nOhm测量精度:塞贝克系数:<±6%;电阻系数:<±5%样品尺寸:块体方条形:2-3×2-3 mm×10-23mm长,薄膜材料:≥50 nm热电偶导距: ≥6 mm电   流: 0 to 160 Ma气   氛:0 to 160 mA加热电极相数/电压:单相,220V,夹具接触热阻:≤0.05 m2K/W图1 单一样品测试系统原理示意图
北京圆通科技地学仪器研究所 2021-08-23
固体样品漫反射光谱测试载样加热装置
本实用新型公开了一种固体样品漫反射光谱测试载样加热装置,涉及漫反射光谱测试仪器领域,包括石英载样片、加热片、调压器,所述石英载样片的一面设有载样凹槽,所述加热片固定在所述石英载样片的另一面,所述加热片通过导线连接所述调压器。本实用新型的优点在于:可以实现在固体样品漫反射光谱测试时进行温度控制,测试结束后可以回收样品。
安徽建筑大学 2021-01-12
一种田外采集水稻样品装置
本实用新型公开了一种田外采集水稻样品装置,包括木制平面框,所述木制平面框框内上设置有可滑动的切割板,所述木制平面框两边框上均开有滑槽,所述切割板两端设有滑轮,所述滑轮嵌装在滑槽内,所述切割板一侧表面连接有可拉动的拉杆。本实用新型的有益效果是,结构简单,实用性强。
青岛农业大学 2021-04-13
广州耐腐蚀试剂柜样品柜生产厂家
产品详细介绍PP试剂柜结构:PP结构;柜身:采用8-12mm厚优质双面瓷白色PP板,PP焊条满焊连接,结构稳固,承重性能好;门板:采用12mm厚优质双面瓷白色PP板;拉手:采用一字型PVC内扣拉手;门铰:采用自闭式工程塑料涂层强防腐弹簧铰链;视窗:采用5mm厚有机玻璃;本体采用抗强酸碱耐化学药品、耐冲击瓷白色PP板制作,焊接一体成型,具半永久性,厚度8-12mm,抗强酸、化学药品、耐冲击、耐腐蚀、不生锈。结构特点1、结构简单,拆装方便,造型美观,便于使用,水电配件齐全。2、台面可采用抗倍特板、环氧树脂板或实心理化板,可定制。3、具有耐强酸、强碱与抗腐蚀的特性。4、降低环境污染,维护使用者的健康电话:020-61078161地址:广州市天河区沙太南路北苑一街1号F-212室厂址:广州市白云区竹料镇竹料体育中心工业园网址:http://www.epoch-lab.com.cn  
广州市奥佩克实验室设备有限公司 2021-08-23
景观水的原位生物修复技术研究
目前水环境污染严重,各地市政景观河道、园林绿地和居住社区的景观水体水质不尽人意,有的出现黑臭,有的富营养化严重。水体修复技术有物理、化学、生物等方法,物理法设备投资和能源消耗大,化学法添加化学品费用高且易造成二次污染,故本项目选用以生物激活剂为主的生物生态原位修复技术。该技术特点是:1、不需建造构筑物,设备投资小;2、生物激活剂投加量少,处理成本和费用低;3、投加的生物激活剂不含外来微生物,经国家授权的医疗卫生单位检测,对动物和鱼类无毒性,不产生二次污染;4、操作和管理简易方便。该项目可应用于住宅小区的人工湖以及其他封闭式或半封闭式景观水体的生物修复,具有良好的推广应用前景。进口药剂已于2004年在杨浦区一社区河道应用,2005~2006年在青浦区两住宅小区试用,2007~2009年在虹口区人工湖和徐汇区市政河道应用并取得较好的修复效果。采样点COD去除率达27.1~64.5%,NH3-N去除率达46.4~81.6%。投加生物激活剂数周后能初见成效,1~2个月后有关水质指标可达到国家景观水要求。生物激活剂可提供水体中好氧微生物种群分解有机物所必要的养分,从而促进水体中“土著”微生物的生长,使其加速分解水中有机污染物。最终提高水中溶解氧和透明度等而改善水体。
华东理工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 10 11 12
  • ...
  • 28 29 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1