高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种高转矩密度的磁场调制型磁力齿轮
本发明公开了一种高转矩密度的磁场调制型磁力齿轮,包括由 外到内依次同心嵌套排列的永磁外定子、调制转子和永磁内转子;永 磁外定子与调制转子之间、调制转子与永磁内转子之间均具有气隙; 永磁外定子的外定子铁心内表面开有梯形槽,梯形槽内端两侧开有退 磁抑制槽;梯形槽内嵌有切向极化的倒梯形的外定子永磁体;退磁抑 制槽起到抑制外定子永磁体局部退磁的作用;调制转子包括多个调磁 铁轭和多个嵌有冲孔的非导磁材料,相邻调磁铁轭间嵌有冲孔的非导 磁材料;永磁内转子包括有外到内依次同心嵌套的内转子永磁体和内 转子铁心;其内
华中科技大学 2021-04-14
SZCL-2数显智能控温磁力搅拌器
产品详细介绍SZCL-2数显智能控温磁力搅拌器|电热套加热 智能控温,温度数显,电热套加热 ,有内置外置传感器。电热套25,50,100,150,250,500,1000,2000,3000,5000,10000,20000毫升全是一次成型、防腐、注塑壳。 技术参数: 控温精度;+-1度(±1℃)控温精度高。 控温范围;室温--300度, 转速;1800转/分. SZCL-2系列数显智能控温磁力搅拌器参数 产品名称 型号 搅拌容量 (ml) 单位   说明 智能控温电热套加热 磁力搅拌器 SZCL-2 25 台   智能控温,温度数显,电热套加热 , 有内置外置传感器。 电热套25,50,100,150,250,500毫升 全是一次成型、防腐、注塑壳。 50 台   100 台   150 台   250 台   500 台   1000 台   2000 台   3000 台   5000 台   10000 台   20000 台   CL系列磁力搅拌器技术参数比较:  序号 型号 控温精度 控温范围 搅拌容量 控温方式 转速R/min 主要技术参数 1 CL-1A 无 无 20-3000ml 无 1800 磁力搅拌,不加热,大功率搅拌,不锈钢面带立杆。 2 CL-2 ±3℃ 室温-300℃ 25-500ml 调压 1800 电热套加热,调压调温。可接接点式温度计 3 SZCL-2 ±1℃ 室温-300℃ 25-20000ml 智能 1800 电热套加热,智能调温。有内置外置传感器。 4 CL-2A ±3℃ 室温-300℃ 50-1000ml 调压 1800 活电热套加热,调压调温。50-500ml可互换, 5 SZCL-2A ±1℃ 室温-300℃ 25-1000ml 智能 1800 活电热套加热,智能调温。50-500ml可互换, 6 CL-3 ±3℃ 室温-300℃ 1000-20000ml 调压 1800 电热套加热,大功率搅拌,无极调速,调压调温。 7 CL-3A ±3℃ 室温-300℃ 250-2000ml 调压 1800 电热套加热,不锈钢活锅,调压调温。可接接点温度计 8 SZCL-3A ±1℃ 室温-300℃ 250-2000ml 智能 1800 电热套加热,不锈钢活锅,智能调温。 9 CL-3B ±3℃ 室温-300℃ 250-1000ml 调压 1800 活锅,活套,调压调温。 10 SZCL-3B ±1℃ 室温-300℃ 250-1000ml 智能 1800 活锅,活套,智能调温。 11 CL-4 ±3℃ 室温-150℃ 2000ml 调压 1800 平板加热,磁力搅拌,不锈钢板面,调压调温 12 SZCL-4 ±1℃ 室温-300℃ 2000ml 智能 1800 平板加热,磁力搅拌,不锈钢板面,智能调温 13 CL-4A ±3℃ 室温-150℃ 2000ml 调压 1800 平板加热,磁力搅拌,铝板板面,调压调温 14 SZCL-4A ±1℃ 室温-300℃ 2000ml 智能 1800 平板加热,磁力搅拌,铝板板面,智能调温 15 CL-4B ±3℃ 室温-150℃ 2000ml 调压 1800 平板加热,磁力搅拌,高频红外线加热,调压调温。 16 SZCL-4B ±1℃ 室温-300℃ 2000ml 智能 1800 平板加热,磁力搅拌,高频红外线加热,智能调温。  
巩义市科华仪器有限公司 2021-08-23
SY18-1油浴水浴恒温磁力搅拌器
        SY18-1控温采用Pid自动控温,使用更加安全,控温更精确,到达设定温度快,温冲小,使用寿命更长,搅拌转速能恒速,低速50r/min也很恒定,以10r/min一级递增,转速显示很正确。定时时间长达9999分钟,具有温度、转速双显示。温度设定和测量由台面与介质自动切换功能。
上海司乐仪器有限公司 2021-12-21
在原子核壳演化研究上的新进展
双幻核132Sn(Z=50,N=82)附近由于实验数据缺乏,人们对该区域壳结构是否会发生变化一直存在着争论。因此,实验上进一步研究该区域的壳演化特征,探讨壳演化内在机制是一个非常重要而有趣的课题,对理解核天体物理中的快中子俘获过程也有重要意义。图1. 奇质量Ag同位素第一个1/2-态和9/2+态 图2. (a) 理论计算的质子有效单粒子能能级差的系统性演化 曲线。(b) 中子在h11/2轨道的占据 近期,核物理与核技术国家重点实验室的李智焕、华辉课题组和合作者在日本理化学研究所开展了对123Pd和125Pd核的β衰变实验研究,首次在衰变子核123Ag和125Ag 的低激发能区发现了具有β放射性的同核异能态。利用新发现的同核异能态,讨论了奇质量Ag同位素中由πg9/2 和 πp1/2两个轨道形成的Z=40次闭壳能隙在N=82附近的演化(见图1)。研究表明在N=82处,Z=40次闭壳能隙可能存在明显的减小。为了进一步了解壳演化的微观机制,使用包含了张量力的壳模型计算了这个质量区单粒子轨道的演化,结果显示相比于N=50处,Z=40次闭壳能隙在N =82处存在明显的减小,张量力对 Ag 同位素中πg9/2 和 πp1/2 轨道以及 Z=40 次闭壳能隙在接近 N=82 时的演化起到非常重要的作用(见图2)。
北京大学 2021-04-11
合成了氧、硫原子双桥连的新型分子带
设计并合成了氧、硫原子双桥连的新型分子带[8]cyclophenoxathiin,利用氧硫杂蒽结构单元的动态可弯折性克服分子带合成的高张力问题;同时,通过氧、硫杂原子对大环分子带的电子结构的调控,实现其作为分子“容器”的功能应用 为了精准地获得具有不同连接顺序和空腔性质的氧硫杂分子带,研究者采用了分步成环的控制合成策略,通过先成单桥大环,再桥连并环的方法,以较高的产率选择性地获得具有“碗状”和“筒状”的两种分子带。进一步研究表明碗状的分子带可通过多重C‒H···S氢键的作用,分子间二聚形成胶囊型的分子“容器”。该二聚体不仅可以包合硝基苯等溶剂分子,而且对C60等富勒烯分子具有极强的选择性络合能力,结合常数高达3.6×109 M‒2,展现出在富勒烯材料的提纯与分离方面的应用潜力。而筒状的分子带可与环型结构的[2,2]环蕃分子相结合,形成独特的“环套环”的超分子包合物。氧硫杂双桥联分子带的可控合成、多样结构及其丰富的主客体化学充分展示了杂原子掺杂分子带的魅力,也为分子带的设计和构筑提供了新的思路。
中山大学 2021-04-13
热重分析仪
热重分析法(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。
上海和晟仪器科技有限公司 2025-05-06
同步热分析仪
同步热分析将热重分析 TG 与差热分析 DTA 或差示扫描量热 DSC 结合为一体,在同一次测量中利用同一样品可同步得到热重与差热信息。
上海和晟仪器科技有限公司 2025-05-06
炭黑含量测试仪
炭黑含量测试仪适用于聚乙烯、聚丙烯、聚丁烯塑料中炭黑含量的测定。炭黑的测试是通过试样在氮气保护下,高温分解后的重量分析得到的。
上海和晟仪器科技有限公司 2025-05-06
导热系数测试仪
瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。
上海和晟仪器科技有限公司 2025-05-06
一种基于椭球拟合的磁力计校正方法
本发明公开了一种基于椭球拟合的磁力计校正方法,包括如下步骤:1、根据磁力计所受到误差影响,建立磁力计误差模型:2、根据收集到的磁力计测量数据,将磁力计误差模型转化为磁力计椭球误差模型;3、计算磁力计椭球误差模型中的参数,并计算出椭球拟合的残差;4、确定满意区间,并计算满意值、满意区间概率,当满意区间概率小于满意值,去除去噪点,返回步骤3利用剩余数据重新计算磁力计椭球误差模型中的参数,并计算出椭球拟合的残差,再次执行步骤4,直到满意区间概率大于满意值,进而求出椭球拟合的误差,完成磁力计校正。该方法可以有效的提高磁力计校正及补偿精度,且该方法可靠性强、成本低、精度高、计算过程简洁。
东南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 7 8 9
  • ...
  • 178 179 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1