高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
工业缺陷检测平台 (Industrial Defect Detection Platform)
工业缺陷检测平台以工业智能制造中的表面缺陷检测为场景,融合人工智能、FPGA、机械臂控制等技术,实现检测传送带上的铝片缺陷情况,配合机械臂将有缺陷的铝板取出,从而模拟FPGA及人工智能在工业制造过程中的应用。This industrial defect detection platform, which takes the surface defect detection in industrial intelligent manufacturing as the scene, integrates Artificial Intelligence, FPGA, mechanical-arm control and other technologies to detect the defects of aluminum sheets on the conveyor belt and then takes out the defective aluminum sheets with mechanical arm, so as to simulate the application of FPGA and Artificial Intelligence in the industrial manufacturing process. 
重庆海云捷迅科技有限公司 2022-06-17
关于原子核壳演化的研究
当原子核的核子数(质子或中子)为2,8,20,28,50,82,126的时候,原子核性质会表现出格外的稳定性,这些数字被称之为原子核的“幻数”。Mayer 和 Jensen等人利用包含了自旋轨道耦合的壳模型对幻数进行了成功的解释,他们开创性的工作被授予1963年诺贝尔物理学奖。随着对远离稳定线原子核性质的研究,人们发现在某些区域原子核壳结构发生了显著变化,与传统壳模型的描述很不一致。为此人们给出了很多理论解释,其中张量力作为新壳演化的重要原因,近些年成功地解释了核素图中多个质量区域新的壳演化规律,受到人们的广泛关注。  双幻核132Sn(Z=50,N=82)附近由于实验数据缺乏,人们对该区域壳结构是否会发生变化一直存在着争论。因此,实验上进一步研究该区域的壳演化特征,探讨壳演化内在机制是一个非常重要而有趣的课题,对理解核天体物理中的快中子俘获过程也有重要意义。图1. 奇质量Ag同位素第一个1/2-态和9/2+态 图2. (a) 理论计算的质子有效单粒子能能级差的系统性演化 曲线。(b) 中子在h11/2轨道的占据 近期,核物理与核技术国家重点实验室的李智焕、华辉课题组和合作者在日本理化学研究所开展了对123Pd和125Pd核的β衰变实验研究,首次在衰变子核123Ag和125Ag 的低激发能区发现了具有β放射性的同核异能态。利用新发现的同核异能态,讨论了奇质量Ag同位素中由πg9/2 和 πp1/2两个轨道形成的Z=40次闭壳能隙在N=82附近的演化(见图1)。研究表明在N=82处,Z=40次闭壳能隙可能存在明显的减小。为了进一步了解壳演化的微观机制,使用包含了张量力的壳模型计算了这个质量区单粒子轨道的演化,结果显示相比于N=50处,Z=40次闭壳能隙在N =82处存在明显的减小,张量力对 Ag 同位素中πg9/2 和 πp1/2 轨道以及 Z=40 次闭壳能隙在接近 N=82 时的演化起到非常重要的作用(见图2)。研究工作发表在近期《物理评论快报》[Phys. Rev. Lett. 122, 212502 (2019)]上。 研究论文第一作者是北京大学博士生陈志强,李智焕和华辉为该论文的共同通讯作者。研究工作得到了科技部项目和基金委项目的资助。
北京大学 2021-04-11
原子经济性反应新工艺
原子经济性反应可从源头上减少和消除化工生产对环境的污染,反应物的原子全部转化为期望的最终产物,是绿色化学与化工发展的重要方向。本项目针对系列原子经济反应工艺,开发了系列固体酸催化剂和反应精馏集成技术,提高转化率和选择性,实现合成工艺无“废水”排放。
南京工业大学 2021-01-12
原子力显微镜演示测量教具
原子力显微镜是具有极高分辨率和稳定性的表面测量仪器,是纳米技术发展的重要基础。同时这项技术已广泛应用于材料、生物、化学和环境等领域。本装置利用自动化、光电转换、光杠杆原理等技术,形象的演示了其工作原理。并通过检测待测样品表面和一个微型力敏感元件之间的微弱的相互作用力来研究物质的表面结构信息。
安徽理工大学 2021-04-13
高灵敏度原子磁力计
已有样品/n高灵敏度磁力仪作为测量极其微弱磁场的重要工具,不论在生物医学、空间与地球物理、工业检测还是军事方面都有着广泛应用。西方国家对高灵敏度磁力计是禁运的。目前超高灵敏度磁力仪主要有超导量子干涉器件(SQUID)磁力仪、原子磁力计等。但是超导量子干涉磁力仪装置复杂、对工作环境要求高,超导材料易碎不易加工,成本极其昂贵且要求在低温条件下工作、需要昂贵的液氦(或液氮)和制冷设备。许多场合不仅要求磁力仪灵敏度高,而且要求体积小、能耗低、易于携带等。目前已经实验实现了各种碱金属原子(如 N
中国科学院大学 2021-01-12
构建杂原子中心手性领域重要进展
从简单的二氢硅烷和烯烃出发,首次实现了铑催化的串联不对称碳氢硅化/烯烃硅氢化反应,“一锅法”流水线般实现了四取代硅中心手性苯并噻咯类衍生物的高效高对映选择性构建(Streamlined Construction of Silicon-Stereogenic Silanes by Tandem Enantios
南方科技大学 2021-04-14
超高灵敏度原子磁力仪
成果创新点 研发的原子磁力仪采用碱金属气体室,工作于室温下, 灵敏度理论极限可以达到亚飞特斯拉灵敏度;不需要其他 磁力仪(例如超导量子干涉仪)昂贵的低温系统,有助于 实现小型化磁力仪;具有极高的磁场探测灵敏度,目前实 现的灵敏度参数为 10fT/√Hz;可应用于脑磁和心磁探测。 技术成熟度 关键技术研发阶段。 市场前景 可实现小型化、经济型的核磁共振检测装置;可用于
中国科学技术大学 2021-04-14
超高灵敏度原子磁力仪
研发的原子磁力仪采用碱金属气体室,工作于室温下, 灵敏度理论极限可以达到亚飞特斯拉灵敏度; 不需要其他磁力仪(例如超导量子干涉仪)昂贵的低温系统,有助于实现小型化磁力仪; 具有极高的磁场探测灵敏度,目前实现的灵敏度参数为 10fT/√Hz;
中国科学技术大学 2023-05-19
单火焰原子吸收光谱仪
1.产品型号 ​ AA-1800F三灯座单火焰原子吸收光谱仪 AA-1800C六灯座单火焰原子吸收光谱仪 AA-1800D八灯座单火焰原子吸收光谱仪     1.产品简介 AA-1800型原子吸收光谱仪是由行业的专家和国内知名高校联手研发完成,拥有几十年光谱仪器的研发和应用经验。该产品包括火焰及氢化物发生系统,可配置多种附件,灵活的配置方案可满足不同层次客户的需求。全自动多功能AA-1800型原子吸收光谱仪可进行复杂的样品分析,多种分析方法可自动切换,做到无人全自动分析。AA-1800型原子吸收光谱仪广泛应用于科研、质检、疾控、环保、冶金、农林、化工等行业,创新的软、硬件设计确保样品分析的准确性、安全性、易用性,仪器维护简单便捷。   2.主要特点高精度全自动化光学系统色散率为1800条/毫米刻线大面积光栅,新型自准直单色器,所有镜片均是石英镀膜,宽广的检测范围和光学稳定性确保了分析的精度。手动3灯座配置3个独立灯电源,可分别预热;高分子雾化室高分子材料抗腐蚀雾化室,耐酸碱,包括氢氟酸,无论是有机或是无机溶液都能得到较好的灵敏度和稳定性;钛燃烧器钛燃烧器,可选配50mm和100mm燃烧器,空冷预混合型,耐腐蚀,耐高盐,大幅度提高火焰的效率和火焰分析的准确度;全自动化分析能自动完成安全点火,熄灭和切换,结构可靠,故障率低,从而确保火焰法的灵敏度和重现性。光源系统三灯位平台切换,可直接使用高性能空心阴极灯,提高火焰分析的灵敏度,自动调节供电参数和光束位置,全自动波长扫描和寻找波峰;高技术指标AA-1800型原子吸收光谱仪元素测试灵敏度达到行业先进水平,灵敏度≤0.015μg/mL/1%;基线漂移小于0.003Abs/30m,稳定性优于0.005Abs/4h;背景校正系统采用氘空心阴极灯和自吸收扣背景进行背景校正,消除低含量测定时分子吸收的干扰,减少了氘灯的发射噪声,延长了使用寿命,具有 较好的稳定性。氘灯背景信号为1A时,扣除背景能力>50倍;智能化分析智能性非常强,人性化设计,自动设置调节火焰高度,自动点火,水平位置自动优化,系统自动设置气体流量。如遇停电、误操作、乙炔泄漏等,系统会自动启动安全保护功能;3.软件功能强大的功能高智能软件,功能强大,友好的中文操作界面。全自动仪器及附加控制,可自动优化,自动稀释;鼠标操作,自动设定菜单数据和校正方法;测量数据可以实现动态显示。标准曲线可以实现自动拟和;样品测量准确:采用向导的方式对样品进行设置,方便快捷;灵敏度校正功能:使测量的结果更为准确;数据共享方便快捷的数据共享数据处理:可对数据进行编辑保存;打印输出:提供单元素与多元素分析的报告;对测量结果及仪器的条件进行打印;数据导出:数据导出功能实现了与其他系统的数据共享。数据处理测量方式 : 火焰法、氢化物-原子吸收法   浓度计算方式 : 标准曲线法(1~3次曲线),自动拟合,标准加入法   重复测量次数 : 1-99次、计算平均值、给出标准偏差和相对标准偏差   结果打印 : 参数打印,数据结果打印,图形打印,可导出WORD、EXCEL文档
上海美析仪器有限公司 2021-12-16
SEK-8502 原子力显微镜
实验原理 AFM是SPM家族中应用领域最为广泛的表面观察与研究工具之一。其工作原理基于原子之间的相互作用力。当一根十分尖锐的微探针在纵向充分逼近样品表面至数纳米甚至更小间距时,微探针尖端的原子和样品表面的原子之间将产生相互作用的原子力。原子力的大小与间距之间存在一定的曲线关系。在间距较大的起始阶段,原子力表现为引力,随着间距的进一步减小,由于价电子云的相互重叠和两个原子核的电荷间的相互作用,原子力又转而表现为排斥力。这种排斥力随着间距的缩短而急剧增大。AFM正是利用原子力与间距之间的这些关系,通过检测原子间的作用力而获得样品表面的微观形貌的。   仪器概述 AFM采用对微弱力极其敏感的微悬臂作为力传感器──微探针。微悬臂一端固定,另一端置有一与微悬臂平面垂直的金字塔状微针尖。当针尖与样品之间的距离逼近到一定程度时,两者间将产生相互作用的原子力,其中切向力(摩擦力)Ft使微悬臂扭曲,法向(纵向)力Fn将推动微悬臂偏转。我们所关心的主要是纵向力Fn,它与针尖──样品间距成一定的对应关系,即与样品表面的起伏具有对应关系。微悬臂的偏转量十分微小,无法进行直接检测,采用光学方法将偏转量放大,可推知微悬臂偏转量(即原子力)的大小,最终获得样品表面的微观形貌。   仪器特点 特有的卧式探头 卧式AFM探头设计,使原子力作用方向与重力方向垂直而互不干扰;降低了探头的整体重心;克服了原有粗调与微调逼近机构的垂直蠕动;具有独特的卧式可视化光路。探头及仪器性能更加稳定和优越。   稳定的三轴压电扫描器 采用互相正交的三轴压电陶瓷扫描控制器,X、Y、Z三轴压电陶瓷之间互不耦合,可保证扫描图像不因耦合而失真;扫描器具有更好的扫描线性和独立性、更高的强度和刚度,兼具更强的扫描驱动力,能同时适用于较小与较大、较轻与较重样品的扫描成像。   优化的检测与控制系统 采用优化的微纳米扫描与反馈控制电路系统,配以多路高精度A/D&D/A控制接口,可获得更高的扫描分辨率、更好的重复性和更佳的图像质量。   完善的软件界面与功能 功能强大、界面友好,可适用于Windows XP/Win7/Win8/Win10等操作系统。一般操作者均可轻松而熟练地掌握,只需点击鼠标,即可完成从图像扫描到图像处理及数据信息计算的全部操作。可用鼠标任意选择局部扫描区域,实现图像平移、定位和缩放;可设定扫描次数并自动控制扫描停止;具有实现X、Y方向的面扫描和线扫描的功能;可获得样品表面的纳米级三维形貌结构和截面线;高质量的彩色/黑白平面图像显示与三维立体图像显示;具有图像的二维和三维纳米标尺标注功能及粒径测量功能;具备纳米级表面微观粗糙度的统计及计算功能;可精确测定样品表面的微纳米级台阶高度和深度;完善的图像处理功能,包括裁剪、粘贴、旋转、对比调节、亮度调节、颜色调整、背景色调整、图像平滑、滤波等。   简单便捷的仪器操作 AFM的操作十分简单和便捷,一般操作人员即可完成,无需专人操作和维护。安装探针、安装样品、粗调和微调进样、图像扫描、图像存储等操作,均可在1分钟内完成。特别适用于科学研究、教学实验及产品检测。   高稳定性与抗干扰能力 AFM既可在良好的实验条件下完美工作,也可在有一般实验室、普通桌面、有轻微振动、有环境干扰、有光照等条件下正常运作,快速扫描观察各种微纳米样品,获得理想的图像和微纳米结构信息。具备更好的稳定性和抗震性,更强的抗(光、电、磁等)干扰能力,更快的扫描速度(最快1幅图像/1~6秒,作为对比,进口仪器的扫描速率一般为1幅图像/10~20分钟甚至更慢)。   高适用性广泛应用领域 可同时适用于科学研究、本科生和研究生的教学实验及纳米技术产品的检测,广泛适用于各种金属/非金属、导体/非导体、磁性/非磁性材料样品的扫描检测。对被测材料样品无特殊要求,免去繁琐的样品制备过程,可直接扫描获得微纳米结构信息。   实验内容与典型实验数据 部分扫描测试样品的AFM图像   部件列表 描述 数量 原子力显微镜探头 1 控制机箱 1 直流高压电源 1 A/D&D/A控制接口卡 1 AFM微探针 15组60 tips USB光学显微镜 1 一体机, 含AFM扫描控制软件 1 样品 5 剪刀、镊子、启子、放大镜等工具 1
上海科铭仪器有限公司 2021-12-16
首页 上一页 1 2 3 4 5 6
  • ...
  • 15 16 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1