高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
稠油及高凝油管输用超分子流动促进剂
该技术针对稠油或高凝油流动性差的特点,研制了一种常温提高流动性的超分子型流动促进剂。 一、项目分类 关键核心技术突破 二、成果简介 该技术针对稠油或高凝油流动性差的特点,研制了一种常温提高流动性的超分子型流动促进剂。 为了实现常温使稠油或高凝油达到稳定流动的目的,采用超分子化学技术,首先将流动性差或常温不流动的原油分散成微米级水溶性乳液,然后通过水加量调节其流动粘度,从而实现管输。不需要原油流动时,只要不是特粘稠油只要加热60℃就可使油水分离。药剂存在于水相中,直接或浓缩后循环利用。 该技术的特点是主要药剂易得,为工业化产品。成本低,操作简便。
西南石油大学 2022-08-16
硅基悬臂梁耦合直接加热式毫米波信号检测仪器
本发明的硅基悬臂梁耦合直接加热式毫米波信号检测仪器是由传感器、模数转换和液晶显示三大模块组成,传感器模块是由悬臂梁耦合结构、功率分配/合成器、直接加热式微波功率传感器和开关构成,衬底材料为高阻Si,功率通过输入端口对应的CPW信号线终端的直接加热式微波功率传感器进行检测;频率检测通过利用直接加热式微波功率传感器测量两路在中心频率处相位差为90度的耦合信号的合成功率实现;相位检测通过将两路在中心频率处相位差为90度的耦合信号,分别同两路等分后的参考信号合成,同样利用直接加热式微波功率传感器检测合成功率
东南大学 2021-04-14
硅基悬臂梁耦合间接加热式毫米波信号检测仪器
本发明的硅基悬臂梁耦合间接加热式毫米波信号检测仪器是由传感器、模数转换和液晶显示三大模块组成,传感器模块是由悬臂梁耦合结构、功率分配/合成器、间接加热式微波功率传感器和开关构成,衬底材料为高阻Si,功率通过输入端口对应的CPW信号线终端的间接加热式微波功率传感器进行检测;频率检测通过利用间接加热式微波功率传感器测量两路在中心频率处相位差为90度的耦合信号的合成功率实现;相位检测通过将两路在中心频率处相位差为90度的耦合信号,分别同两路等分后的参考信号合成,同样利用间接加热式微波功率传感器检测合成功率
东南大学 2021-04-14
一种基于接触式加热方法的机匣高温包容试验装置
本实用新型公开了一种基于接触式加热方法的机匣高温包容试验装置。在机匣外壁缠绕软壁高温接触式电加热器,外部包裹保温毡,同时在机匣上、下安装边处加垫隔热板,保温毡与隔热板使加热器及机匣处于相对密闭的空间。加热器电源线和机匣内壁粘贴的一个热电偶与温度控制柜连接,此热电偶测量结果作为温度反馈使加热功率自动调节。其余热电偶与温度显示仪表连接,以观察机匣周向加热的均匀性。本实用新型提供的试验装置和试验技术方法主要用于航空发动机机匣高温包容试验,在更接近发动机实际工况下检验机匣包容能力。机匣高温包容试验装置包括软壁接触式电加热器、加热电源线、隔热板、保温毡、热电偶、热电偶引线、温度控制柜和温度显示仪表等。
浙江大学 2021-04-13
SC-26984S原油馏程自动测定仪(双管)
仪器概述          本仪器是我公司最新研发的第三代产品,根据国家标准GB/26984-2011《原油馏程的测定》标准试验方法设计制造的。是集机械、光学和电子技术于一体,采用进口传感器,量筒回收体积读数采用进口数控精密光学跟踪检测系统。自动完成馏程全过程实验,广泛适用于水含量质量分数不大于0.2%的原油的测定。对于水含量质量分数大于0.2%的原油需进行脱水处理后也适应。可同时进行两组试样的测试实验。从而大大得提高了效率,是各分析样品多,人手少检测实验室工程师们的首选。 技术参数 1、工作电源:AC220V±10%  50Hz  1.6KW 2、操作方式: Windows操作系统 10.4 寸彩色液晶触摸屏 3、温度范围:0~450℃,分辨率0.1℃,德国进口PT100温度传感器 4、制冷方式:德国进口压缩机制冷5、蒸馏速率:2~10 mL/min(自由设定,自动调整) 6、体积检测范围:0~100mL 分辨率 0.1mL 7、冷浴温度范围:0~80℃ ,控温精度0.2℃ 8、冷阱温度范围:0~60℃,控温精度0.2℃ 9、气压测量范围:300~1100hpa,精度±3hpa,内置式压力传感器,自动修值 10.安全保护系统:内置式紫外火焰传感器自动监测,出现火焰时自动开启保护气阀 11.保护气体接口:φ7.5~8mm;保护气体为氮气或二氧化碳,压力不低于0.6Mpa 12.仪器外形尺寸:460X500X660cm(长/宽/高),净重:约70公斤 13.使用环境温度:5~40 ℃  使用相对湿度:≤ 80%  性能特点  1、冷浴及冷阱温度均采用可分段程序控制,冷浴部分采用冷凝管和制冷蒸发管集成式的金属浴技术,确保冷热直接传导,无液体传热介质,既安全又方便 2、仪器采用可提升自锁的升降控制技术,加热炉可快速提升和回落,可以任意位置停留,真正实现了无极性调节技术,实验结束时,炉架自动下滑,切断热源余热,实现快速冷却 3、加热炉采用陶瓷加热装置脉冲调制红外线辐射加热方式,加热冷却速度快,确保安全可靠 4、压缩机、加热陶瓷元件、温度传感器、制冷分流阀,均采用进口器件,确保仪器数据的准确性和可靠性,同时使用寿命长,故障率低 5、实验数据无限存储,并随时查看,内置微型热敏打印机输出检测结果 6、电炉冷却,实验结束后,冷却风扇可自动启动快速降温冷却 7、红外线调制光学技术实现液位跟踪检测及初馏检测,不受环境干扰,自动检测体积零点位置并可准确判断干点 8、镀膜石英孔板,隔热不炸裂,独特的孔板安装结构,更换不同孔径的孔板无需调整 网址链接 http://www.csscyq.com/proshow.asp?id=820
长沙思辰仪器科技有限公司 2021-12-20
固支梁T型结间接加热在线式未知频率微波相位检测器
本发明的固支梁T型结间接加热在线式未知频率微波相位检测器由六端口固支梁耦合器,通道选择开关,微波频率检测器,微波相位检测器级联构成;六端口固支梁耦合器由共面波导,介质层,空气层和固支梁构成,两个固支梁之间的共面波导长度为λ/4;六端口固支梁耦合器的第一端口到第三端口、第四端口以及第一端口到第五端口、第五端口的耦合度分别相同,待测信号经第一端口输入,由第二端口输出下级处理电路,由第四端口和第六端口输出微波相位检测器,由第三端口和第五端口输出通道选择开关;通道选择开关的第七端口和第八端口接间接加热式微波
东南大学 2021-04-14
固支梁T型结间接加热在线式已知频率微波相位检测器
本发明的固支梁T型结间接加热在线式已知频率微波相位检测器由六端口固支梁耦合器、微波相位检测器和间接加热式微波功传感器级联构成;六端口固支梁耦合器由共面波导,介质层,空气层和固支梁构成;共面波导制作在SiO2层上,固支梁的下方沉积介质层,并与空气层共同构成耦合电容结构,两个固支梁之间的共面波导长度为λ/4;六端口固支梁耦合器的第一端口到第三端口、第四及到第一端口到第五端口、第六端口的功率耦合度相同,待测信号经六端口固支梁耦合器的第一端口输入,由第三端口和第五端口输出到间接加热式微波功率传感器,由第四端
东南大学 2021-04-14
固支梁T型结直接加热在线式未知频率微波相位检测器
本发明的固支梁T型结直接加热在线式未知频率微波相位检测器由六端口固支梁耦合器,通道选择开关,微波频率检测器,微波相位检测器,直接加热式微波功率传感器级联构成,两个固支梁之间的共面波导长度为λ/4;六端口固支梁耦合器的第一端口到第三端口、第四端口以及第一端口到第五端口、第六端口的功率耦合度分别相同,待测信号经第一端口输入,并由第二端口输出到下级处理电路,由第四端口和第六端口输出到微波相位检测器,由第三端口和第五端口输出到通道选择开关;通道选择开关的第七端口和第八端口接直接加热式微波功率传感器,通道选择
东南大学 2021-04-14
固支梁T型结直接加热在线式已知频率微波相位检测器
本发明的固支梁T型结直接加热在线式已知频率微波相位检测器由六端口固支梁耦合器,微波相位检测器和直接加热式微波功率传感器构成;六端口固支梁耦合器由共面波导,介质层,空气层和固支梁构成;共面波导在SiO2层上,固支梁的下方沉积介质层,并与空气层,固支梁共同构成耦合电容,两个固支梁之间的共面波导长度为λ/4;六端口固支梁耦合器的第一端口到第三端口和第四端口以及第一端口到第五端口、第六端口的功率耦合度相同,待测信号经六端口固支梁耦合器的第一端口输入,由第三端口和第五端口输出到直接加热式微波功率传感器,由第四
东南大学 2021-04-14
一种实验加热装置
本实用新型公开了一种实验加热装置,包括底座、水冷座、加热片、第一屏蔽层、第二屏蔽层和上盖;水冷座设置在底座上,上盖设置在水冷座上;水冷座上端面设置有加热片安装槽,加热片安装在加热片安装槽上,加热片通过线路与外部电源相连;第一屏蔽层设置在上盖下端面,加热片与第一屏蔽层间留有容置空间;第一屏蔽层中间与上盖中间设有观察孔;水冷座内设置有循环水管路,水冷座侧壁上设置有循环水进口和循环水出口;底座与所述水冷座之间设有第二屏蔽层。通过水冷结构对装置降温,通过屏蔽层减小装置对周围环境的热辐射,通过底座加快装置与外部结构的热传递,防止热量聚集,从而有效减小加热过程中热量传递对扫描电镜正常工作的影响。
浙江大学 2021-04-13
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 207 208 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1