高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
桨叶前缘带旋转圆柱的水平轴风力机
桨叶前缘带旋转圆柱的水平轴风力机。装置示意图如下,包括塔架 5、 水平轴机箱 4、轮毂 3 及桨叶 1,每个桨叶 1,一根可控的绕自身轴线的旋转圆 柱2。
上海理工大学 2021-01-12
桨叶前缘带旋转圆柱的水平轴风力机
桨叶前缘带旋转圆柱的水平轴风力机的研发。装置示意图如下,包括塔 架 5、水平轴机箱 4、轮毂 3 及桨叶 1,每个桨叶 1,一根可控的绕自身轴线的旋 转圆柱 2。
上海理工大学 2021-01-12
桌面型五轴联动数控机床实训室建设案例
在100平方的教室里放置了10台五轴数控设备,此五轴数控设备不但占地面积小,耗电和实习材料消耗少,可以增加学生实习的课时;
广东育菁装备有限公司 2022-11-09
大疆DJI RONIN如影 三轴手持稳定架
产品详细介绍ALU1113DJI RONIN 手持稳定架身行如影.灵感随行DJI Ronin (“如影”)是为专业级或影视级摄影师定制开发的一款三轴手持云台系统,提供了稳定流畅的影像画质,可满足日常拍摄和影视制作需求。有Ronin在手,您能随时随地拍摄出高精度的稳定画面。即使安裝到飛行平台上,在高速飞行状态下,也可以实现最高水平的精确控制。此外,其量身定做的高速处理器、高精度感测器和先进的工业级控制算法,將“Ronin”的控制精度控制在了0.02°范围內。响应速度快慢可调,拍摄角度动静结合!有了“Ronin”,能束缚你镜头表现的,將只有你自己的想像力。DJI Ronin “如影” 三轴手持稳定器介绍http://v.youku.com/v_show/id_XNzM4NTU3MjE2.htmlDJI Ronin 基本特性介绍http://v.youku.com/v_show/id_XNzMxNjI4MTE2.html 5分钟快速安裝、平衡调节DJI “Ronin”的安裝和相机平衡的调试,通常可以在5分钟內手动完成。简单快捷,大大节省时间的同时,亦可降低摄影成本,提高摄影效率。同时通过云台 APP內置的ATS(Auto Tune Stability)參数自整定功能,在调节好平衡后,系统可以根据所安裝相机的惯性,自动进行參数调节,使系統參数处于最佳状态。 SMOOTHTRACK™ 控制SmoothTrack™控制使得单个云台手能够更简单地操作云台,可以更自由地控制云台的俯仰和旋转,从而平滑地調整相机的拍摄角度。无论是宽广角场景,还是近距离拍摄,单个云台手都能轻松自如地掌控。  多种工作模式体验DJI Ronin手持云台系统包含三种工作模式,无需通过Ronin App或者第二云台手控制器的任何设置,即可实现各模式之间的自由切換,以满足不同的拍摄环需求。SmoothTrack™功能在每個工作模式下都可使用。   上下倒置操作模式使用上下倒置操作模式时,您可以轻松將云台上下翻转,无需費力將云台举起即可使相机与眼睛保持在同一水平线上。 便携悬挂模式系统默认标准控制模式为便携悬挂操作模式。低位悬挂,贴近地面或直接手持于身体前方,都会得到流畅稳定的画面。使用这种模式,您也可以將云台安裝在飞行平台上,比如多旋翼飞行器。   手提模式该模式适用于狭小空间的近地移动拍摄,云台的任何部位很难与您的身体(尤其是腿部)相接触,从而可以完全避免在狹小空间作业时,云台拍摄受到自身身体或其它物体的阻礙高品质、持久耐用云台主体由精密加工的航空級铝材制成,持久耐用。DJI出色的工业设计將大部分线材都集成在云台內部,一方面更加美观,一方面也能更好地适应复杂的现场拍摄换境,滿足专业用戶的需求。 强动力、高扭矩电机DJI Ronin手持云台使用的高性能电机,能满足所有的控制需求。其采用磁场定向控制技术,具有高精度、低振动、高扭矩的特点,性能远远超过市场上的同类产品。   高性能处理器DJI Ronin配备定制的先进32位浮点DSP处理器,比常用的ARM处理器效率更高,能更快速地对Ronin內置编码器进行信号处理,从而达到Ronin本身的高性能需求。 內置接收机和遥控系统通过系统內置的D-Bus接收机,第二云台手可以远程操控云台的三轴转动控制。云台操作员就可以专注于云台的运动,而第二云台手就可以更好地來控制相机拍摄角度。第二云台手操作模式,同样也适用于空中影视摄影 水平桿配件安裝座方便安裝必要的配件,如视频监视器、第三方视频发射器等等,都可以通过水平桿配件安裝座很容易地实现。頂部手柄快拆頂部手柄桿快拆設計,方便拆卸或裝載至其它平台上,如汽車或飛行平台等。  第二雲台手控制器DJI Ronin手持云台系統,标配第二云台手控制器。使用该遥控器可以控制云台旋转和俯仰,控制器上有两个定制开关,可以控制分配速度和操作模式。  移动式蓝牙通过iOS调校软件(Android版本即将发布)可以调整系統参数。通过PC调校软件來升级软件和获得新功能。 快速可插拔智能充电电池4小时工作时间DJI Ronin手持云台系統标配定制智能电池,易于安裝和充电方便。续航时间將取决于您所使用的相机,其连续工作时间可达到约4小时。   电源分配模組DJI Ronin的电源分配模組內置两个标准的12V P-taps和一个500mAh全尺寸USB插头,同時配备了支持DJI Lightbridge远距离数字高清图传系統的连接点。多种电源接頭使得您能方便地扩展各种配件,比如跟焦系統、高清图传和其他配件,同時也减少了布线,保证了美观。 15mm 圆桿配件系統配备兩根15mm圆桿,便于其它裝置的安裝扩展,如跟电动跟焦器或遮光斗等等。   便携手提箱DJI Ronin标配一款结实耐用、防水的滚轮手提箱,方便运输。其定制的密集EVA泡棉,能很好地保护云台主体和相关配件。 远端追焦可加购Redrock microRemote追焦系統,进行远端追焦控制镜头对焦。  自动参数配置功能通过云台app內置的ATS(Auto Tune Stability)參數自整定功能,在调节好平衡后,系統可以根据您所安裝相机的慣量,自动进行參数调节,使系統參数处于最佳狀态。远程調参遙控器的参数配置可以通过云台的调參App來实时调整,比如控制速度,重新映射控制搖桿和限位設置等等。參数实时查看云台的重要參数数据都可以通过移动调参app实时查看,比如电机用电量、平移(Pan)、俯仰(Tilt)和橫滚(Roll)各轴的运动角度、电子溫度监控、剩余电量等等。SMOOTHTRACK™ 调节用戶可以根据实际需求单独调整設置控制速度。SmoothTrack™功能會根据操作员的动作來传递云台运动。在云台旋转或俯仰时,相机也会平滑地做相应的旋转和俯仰动作。旋转和俯仰方向的速度可通过软件分別设置。同时其运动加速度也可以被精确設置。如果云台手需要在兩个位置间做快速的旋转或俯仰动作,而标准速度设置又不能满足需求,那么您就可以設置加速度,而不需要影响标准运动速度。固件在线升級所有云台出厂时都自帶最新固件,也可通过在线升級的方式進行后续更新,升級扩展系統功能,方便您获得最新的功能和特性。可搭载相机尺寸外观设备机械与电子特性工作特性內置功能1. 三种工作模式·便携悬挂·上下倒置·手提模式2. 內置独立的IMU模块3. 道指专用DJI云台伺服驱动模块4. 蓝牙模块5. USB接口6. 2.4GHz的接收机7. 温度传感器8. DJI高級32位的DSP处理器9. 的D-Bus / PPM接收机支持 配件电源接口12V的P-TAP×2,USB 500毫瓦×1; 道指DJI Lightbridge×1GCU输入电源4S罗宁电池支持接口类型2.4GHz的遙控器,藍牙,USB调参软件安裝要求了Windows XP SP3; Windows 7中; Windows 8的(32或64位)移動設備軟件安裝要求的iOS 6.1及以上,iPhone 4S,iPhone 5,iPhone 5S,iPod touch的4,iPod touch的5,iPad的3,iPad的迷你工作电流·静态电流:300mA(@ 16V)·动态电流:600毫安(@ 16V)·堵转电流:最大10A(@ 16V)工作环境溫度-15°C ~ 50°C (-5°F ~ 120°F)重量4.2KG(9.26磅),含把手重量尺寸620毫米(寬)×280-380mm(深)x 500毫米(高)可搭载相机尺寸最大长度为140毫米,最大宽度为195毫米,最大高度为 225毫米负载重量(參考值)7.25公斤(16磅)角度控制精度0.02°最大可控转速·旋转方向(pan):90°/ S·俯仰方向(tilt):100°/ S·橫滾方向(roll):30°/秒可控转动范围·旋轉方向(pan):360°/ S·俯仰方向(tilt):45°/ -120°·橫滾方向(roll):±25° 可適用機器如下:BMPCC, BMCC, Canon 1Dc, Canon 5D MK II, Canon 5D MK III, Canon 6D, Canon 7D, Canon C100, Canon C300, Canon C500, Nikon D800, Panasonic GH3/GH4, Red Epic/Scarlet, Sony Nex7
德维尼(北京)科技有限公司 2021-08-23
2220 单轴高精度加速度计
产品详细介绍特点:传感器:微机械电容、充氮阻尼、密封封装内置温度传感器(用于输出温度补偿)输出阻抗低,可支持远距离传输全量程线性标定DC/AC 加速度响应可提供非标量程定制服务传感器已内置放大信号处理符合RoHS标准应用:飞行测试 仪器仪表 机器人安全系统 冲撞测试 机械控制振动检测 模态分析 振动分析车辆动态性能测试参数:传感器性能:(数据为9~32V供电,温度输出 25℃ 得出)性能 -002 -005 -010 -025 -050 -100 -200 单位输入量程 ±2 ±5 ±10 ±25 ±50 ±100 ±200 g频率响应(3dB) 0-400 0-600 0-1000 0-1500 0-2000 0-2500 0-3000 Hz灵敏度(差分输出) 2000 800 400 160 80 40 20 mV/g输出噪声(差分模式,典型值) 8 9 10 25 50 100 200 μg/root HZ可承受最大冲击(0.1ms) 2000 g传感器性能:(除注明外,数据为9~32V供电,温度输出 25℃ ,差分模式得出)性能参数 最小值 典型值 最大值 单位横轴灵敏度 1 2 %偏置标定误差 -002   4 满量程的% -005~-200   1.5 偏置温漂TC=-55~125℃ -002,005 100 200 PPM%满量程/℃ -010~-400 50 100 标定误差比例因子 1 2 %温漂比例因子TC=-55~125℃ -150   +150 Ppm/ ℃非线性(±90%满量程) -002~-050 0.15  0.5 满量程的% -100 0.25 1.0 -200 0.4 1.5 电源抑制比 65 DB输出阻抗 1 欧姆供电电压 9   32 V功耗 12 14 mA质量(L型) 10 克
上海维逸测控技术有限公司 2021-08-23
2470 三轴高精度加速度计
产品详细介绍特点:传感器:微机械电容、充氮阻尼、密封封装内置温度传感器(用于输出温度补偿)全量程线性标定DC/AC 加速度响应可提供非标量程定制服务传感器已内置放大信号处理符合RoHS标准应用:地震监测 消费电子 机器人安全系统 冲撞测试 机械控制振动检测 模态分析 振动分析仪器仪表 车辆动态性能测试参数:传感器性能:(数据为8~32V供电,温度输出 25℃ 得出)性能 -002 -005 -010 -025 -050 -100 -200 单位输入量程 ±2 ±5 ±10 ±25 ±50 ±100 ±200 g频率响应(3dB) 0-400 0-600 0-1000 0-1500 0-2000 0-2500 0-3000 Hz灵敏度(差分输出) 2000 800 400 160 80 40 20 mV/g输出噪声(差分模式,典型值) 12 14 15 38 75 150 300 μg/root HZ可承受最大冲击(0.1ms) 2000 g传感器性能:(除注明外,数据为8~32V供电,温度输出 25℃ ,差分模式得出)性能参数 最小值 典型值 最大值 单位横轴灵敏度 2 3 %偏置标定误差 -002   4 满量程的% -005~-200   1.5 偏置温漂TC=-55~125℃ -002 100 200 PPM%满量程/℃ -005~-400 50 100 标定误差比例因子 1 2 %温漂比例因子TC=-55~125℃ -150     +150 Ppm/ ℃非线性(±90%满量程) -002~-050 0.15 0.5 满量程的% -100 0.25 1.00 -200 0.4 1.5 电源抑制比 65 DB输出阻抗 1 欧姆供电电压 8 32 V功耗 27 30 mA质量  21 克
上海维逸测控技术有限公司 2021-08-23
深海微生物驱动碳氮循环耦合研究
浮游植物在表层获取光能固定CO2,形成颗粒有机碳(POC)往下沉降,在深海再矿化后生成铵(NH4+),从而为深海化能自养细菌/古菌提供了能量来源。因此,氨氧化古菌和亚硝氧化细菌所介导的两步硝化过程是实现光能传递到深海被利用的重要途径,是深海重要的供能过程,支撑了海洋“黑暗固碳”——不依赖于光合作用的化能自养固碳,为深海生物圈提供了“新”的有机质,同时积累硝氮。由于亚硝氧化菌群研究的长期滞后,氨氧化和亚硝氧化功能群在深海的协作关系始终不明了,因此国际上对深海硝化菌群支撑的碳(C)−氮(N)耦合机理(定性)的理解仍极为有限,对C−N计量学关系(定量)的准确估算仍是空白。 该研究工作结合多组学分析、生理学实验、现场原位速率及动力学观测和模拟,以及生态系统模型,阐释了氨氧化古菌和亚硝氧化细菌显著差异的代谢策略,及两步氧化过程耦合、硝化与黑暗固碳耦合的生理生态学机制,建立了硝化菌群支撑的C−N、物质与能量转换的计量学关系,量化了深海硝化过程对深海生物圈及全球海洋碳循环的贡献和影响。该工作为深海物质与能量循环研究提供了新的参数,对深入认识深海生物地球化学过程具有重要意义。
厦门大学 2021-02-01
深海微生物驱动碳氮循环耦合研究
项目成果/简介:浮游植物在表层获取光能固定CO2,形成颗粒有机碳(POC)往下沉降,在深海再矿化后生成铵(NH4+),从而为深海化能自养细菌/古菌提供了能量来源。因此,氨氧化古菌和亚硝氧化细菌所介导的两步硝化过程是实现光能传递到深海被利用的重要途径,是深海重要的供能过程,支撑了海洋“黑暗固碳”——不依赖于光合作用的化能自养固碳,为深海生物圈提供了“新”的有机质,同时积累硝氮。由于亚硝氧化菌群研究的长期滞后,氨氧化和亚硝氧化功能群在深海的协作关系始终不明了,因此国际上对深海硝化菌群支撑的碳(C)−氮(N)耦合机理(定性)的理解仍极为有限,对C−N计量学关系(定量)的准确估算仍是空白。 该研究工作结合多组学分析、生理学实验、现场原位速率及动力学观测和模拟,以及生态系统模型,阐释了氨氧化古菌和亚硝氧化细菌显著差异的代谢策略,及两步氧化过程耦合、硝化与黑暗固碳耦合的生理生态学机制,建立了硝化菌群支撑的C−N、物质与能量转换的计量学关系,量化了深海硝化过程对深海生物圈及全球海洋碳循环的贡献和影响。该工作为深海物质与能量循环研究提供了新的参数,对深入认识深海生物地球化学过程具有重要意义。
厦门大学 2021-04-10
激光驱动光子对撞机的新方案
北京大学物理学院颜学庆教授和卢海洋研究员领导的课题组提出了激光驱动光子对撞机的新方案,该方案每脉冲可以产生3亿个Breit-Wheeler事件,并且所产生的正负电子对发散角只有7度,具有非常好的准直性。同时,背景噪声可以得到有效抑制,信噪比高达1000:1。研究成果以 “Creation of electron-positron pairs in photon-photon collisions driven by 10-PW laser pulses”为题在线发表在《物理评论快报》(Physical Review Letters)。 根据爱因斯坦质能方程和量子电动力学理论,在一定条件下光子(能量)可以转化成物质,这对研究物质的起因有重要的作用。相关的理论研究始于上世纪30年代,直到1997年美国SLAC实验室才首次在实验中观测到多光子碰撞产生正负电子对的过程。然而,对于两个高能光子的互作用过程,也就是常说的光子对撞机,到目前为止还未能在实验中观测到。在光子对撞机中,光子的互作用的次数与光子数目和光子互作用截面成正比,与光子束的脉冲宽度、两束光子束的交叠面积成反比。在过去实验中不能观测到光子的互作用过程是因为已有伽马射线源的流强和亮度还达不到要求。 近年来,随着激光技术的发展,特别是10拍瓦(1拍瓦=1e15瓦)激光器的建成,激光光强将可以达到1e23W/cm3以上。当如此高强度的激光与物质相互作用时,大部分激光能量被吸收并转化成伽马射线辐射源,如果可以有效控制伽马射线的发散角,辐射的伽马射线将会达到前所未有的流强和亮度。 团队研究人员在前期的工作中对产生超高亮度伽马光源进行了深入的研究,首次从理论上系统阐明了微通道结构靶中,纵向电场主导了电子的加速过程,同时电子的横向加速可以得到有效的抑制,因此可以获得高准直性的电子束,当这些电子束在横向场中的相位发生反转时,电子就会在管道边界处产生强伽马辐射。由于电子的发散角决定了伽马辐射的发散角,因此可以获得准直性非常好的γ-ray辐射源。数值模拟中10PW激光所能获得的发散角小于3度,亮度比之前研究报道结果高出两个数量级的伽马辐射源。图1. 激光驱动光子对撞机产生正负电子对的方案设计图2. 本方案可以获得高出之前2-3量级的伽马光源亮度 本工作即基于以上研究成果,将该超高亮度的伽马射线应用于光子对撞机。理论计算结果表明,该方案可以获得超高信噪比(>1000:1),且每一发正负电子对信号(>1e8)远高于现有测量技术的探测极限。因此,通过该方案可以在实验室中验证光子互作用过程中由能量到物质的转换过程,将提供激光驱动光子对撞机研究的新途径,也将极大的促进双光子BW物理的发展。未来有望依据本方案建设基于重频拍瓦飞秒激光的高亮度伽马源及其应用装置。 北京大学物理学院博士后余金清为论文第一作者。颜学庆教授和卢海洋研究员为通讯作者。论文合作者还包括北京大学的陈佳洱院士、马文君研究员,広岛大学的T. Takahashi教授,高能物理所的黄永盛研究员。该研究工作得到国家自然科学基金、科技部重点研发专项、挑战计划和中国博士后科学基金的联合资助。相关模拟工作得到北京大学高性能计算平台的支持。相关文章链接:Phys. Rev. Lett. 122, 014802 (2019) https://doi.org/10.1103/PhysRevLett.122.014802Appl. Phys. Lett. 112, 204103 (2018) https://aip.scitation.org/doi/abs/10.1063/1.5030942
北京大学 2021-04-11
小型电驱动四足仿生机器人
"e-Dog四足仿生机器人:全球首款可高速奔跑和跳跃的轻量级电驱动四足仿生机器人,面向高校和中小学的教学培训型四足仿生机器人系统平台,包括软硬件开源的高性能四足仿生机器人及相应的开发工具软件,为国内高校和中小学提供教学、培训、比赛二次开发平台。机器人具备卓越的运动能力,采用国内领先的步态规划算法,能够快速奔跑和跳跃,并具备较强的地形适应能力,能够跨越高台、楼梯、沟壑、斜坡等障碍地形。 roboDog如宝机器狗:国内首款具备丰富感知能力,并搭载智慧AI云脑的轻量级机器狗。roboDog面向家庭场景,在卓越的运动性能和地形适应能力基础上,增加了丰富的传感功能,构建了包括视觉、听觉、触觉等能力的综合环境感知系统以及基于云服务平台的智慧云脑。同时针对家庭应用场景,为用户提供了丰富流畅的交互体验。 "
山东大学 2021-04-10
首页 上一页 1 2
  • ...
  • 35 36 37
  • ...
  • 112 113 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1