高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
深圳市兆点创控科技有限公司
深圳市兆点创控科技有限公司 Shenzhen Megadot Innovation Co.,Ltd. 简称:兆点创控 ,品牌:ZD-Touch.  深圳市兆点创控科技有限公司成立于2011年, 是一家专业从事研发,生产,销售互动产品的高科技企业,公司座落在改革开放的最前沿城市──深圳。 公司自主开发基于红外技术的人机交互类高科技产品,目标是追踪计算机世界前沿人机交互技术,创造最自然、和谐的人机交互模式,让“触摸改变生活”。公司拥有强大的研发团队,研发团队以大学教授、专家及国家863科研团队成员组成,以“服务教育,共创未来;服务好教育,共享人生”为使命;以专业化的研发和营销队伍为依托,用严谨的工作态度,快速的工作效率,为各界客户朋友提供优质的产品和服务。希望通过专业水平和不懈努力,为客户创造更高价值,实现与客户的互利共赢!
深圳市兆点创控科技有限公司 2021-01-15
青岛海粟新材料科技有限公司
青岛海粟是一家专门从事色谱材料,自有技术循环生产的企业。主要有层析硅胶、高效硅胶、硅基色谱填料、贵重金属清除剂、色谱耗材等高性能的提纯分离材料,广泛应用于制药、化学合成、精细化工、科研分析制备等领域。 在科技国家高速发展的背景下,我们不能单纯依靠国外几十年前的技术水平,必须要创新突破,找到我们自己的道路。公司首先依靠产品的稳定性,再对产品特性坚持不断的探索,对工艺环节流程认真优化,可提供常规和定制等不同的系列产品,满足多样化的市场需求。帮助客户在分析和制备中减少项目问题和提高运行效率,共同向上发展。 公司自创立以来,始终坚持“尊重、谦和、正直”的做人做事理念,致力于更用心的产品和服务,尊重员工和客户的各项建议反馈,希望彼此协作激励,获得更多的认可和信任,使公司未来发展的可持续性更好,也会协同各方积极为社会的发展做出更多的贡献。
青岛海粟新材料科技有限公司 2025-02-07
中国科大在分布式量子精密测量方面取得重要进展
中国科学技术大学教授潘建伟及其同事陈宇翱、徐飞虎等利用多光子量子纠缠在国际上首次实现分布式量子相位估计的实验验证,这为将来构建基于量子网络的高精度量子传感奠定基础。该成果于11月30日在国际学术知名期刊《自然·光子学》上在线发表。 分布式传感是一种可用于同时执行远程空间多个节点上精密测量任务的重要手段,在日常生活、科学研究和工程等领域有着广泛的应用。例如,该项技术可用于桥梁、飞机等大型结构的应力场分布和温度场分布的有效监测。随着量子技术的不断发展,传感技术也迈进了量子化时代。量子网络作为量子信息和量子计算的重要组成,在执行各类远程多节点任务中起着重要作用。当对多个空间分布的参量进行测量时,分布式量子传感能够实现超越经典统计极限的测量精度。然而,分布式量子传感面对的一个重要问题是:如何选择并制备能够实现对多个参量最优的测量精度的量子纠缠态。研究表明,对于某类分布式的最大纠缠态,理论上能够达到最优测量精度,即海森堡极限。 研究团队设计了最优的测量方案,基于多光子量子纠缠,通过操纵六光子干涉仪,实验演示了多个独立的相移及其平均值测量。实验结果显示,利用分布式纠缠态进行测量,其精度可以超越经典传感器的理论极限。基于光子纠缠和相干性组合的方案,研究团队进一步实验演示了多个空间相移的线性组合测量(参数数量总个数达到21个),与仅利用粒子纠缠的方案对比,该组合式方案不仅能够增加可测量参数数量,还能提高测量精度。 该项工作成功实现了多参量分布式量子传感的原理性实验验证,评估了不同纠缠结构情况下的测量精度,验证了纠缠结构对测量精度的增强效果,扩展了资源利用率和可测量的参量数量,朝分布式量子传感的实际应用迈出了重要一步。《自然·光子学》杂志的审稿人对该工作给予高度评价,称赞这是一项“重要的里程碑工作”(constitutes a significant milestone)。
中国科学技术大学 2021-02-01
中国科大在分布式量子精密测量方面取得重要进展
项目成果/简介:中国科学技术大学教授潘建伟及其同事陈宇翱、徐飞虎等利用多光子量子纠缠在国际上首次实现分布式量子相位估计的实验验证,这为将来构建基于量子网络的高精度量子传感奠定基础。该成果于11月30日在国际学术知名期刊《自然·光子学》上在线发表。 分布式传感是一种可用于同时执行远程空间多个节点上精密测量任务的重要手段,在日常生活、科学研究和工程等领域有着广泛的应用。例如,该项技术可用于桥梁、飞机等大型结构的应力场分布和温度场分布的有效监测。随着量子技术的不断发展,传感技术也迈进了量子化时代。量子网络作为量子信息和量子计算的重要组成,在执行各类远程多节点任务中起着重要作用。当对多个空间分布的参量进行测量时,分布式量子传感能够实现超越经典统计极限的测量精度。然而,分布式量子传感面对的一个重要问题是:如何选择并制备能够实现对多个参量最优的测量精度的量子纠缠态。研究表明,对于某类分布式的最大纠缠态,理论上能够达到最优测量精度,即海森堡极限。 研究团队设计了最优的测量方案,基于多光子量子纠缠,通过操纵六光子干涉仪,实验演示了多个独立的相移及其平均值测量。实验结果显示,利用分布式纠缠态进行测量,其精度可以超越经典传感器的理论极限。基于光子纠缠和相干性组合的方案,研究团队进一步实验演示了多个空间相移的线性组合测量(参数数量总个数达到21个),与仅利用粒子纠缠的方案对比,该组合式方案不仅能够增加可测量参数数量,还能提高测量精度。 该项工作成功实现了多参量分布式量子传感的原理性实验验证,评估了不同纠缠结构情况下的测量精度,验证了纠缠结构对测量精度的增强效果,扩展了资源利用率和可测量的参量数量,朝分布式量子传感的实际应用迈出了重要一步。《自然·光子学》杂志的审稿人对该工作给予高度评价,称赞这是一项“重要的里程碑工作”(constitutes a significant milestone)。
中国科学技术大学 2021-04-11
供应光纤光谱仪/微型光谱仪//长春博盛量子
产品详细介绍 光纤光谱仪产品名称: Maya2000-Pro产品名称: S1024 高井深光谱仪产品名称: QE65000科研级的光谱仪 产品名称: NIR-256 温度可调的近红外(NIR)光谱仪 产品名称: NIR-512 温度可调的近红外(NIR)光谱仪 产品名称: HR4000高分辨率光谱仪 产品名称: HR2000+高分辨率光谱仪 产品名称: USB4000微型光谱仪特点• 5种触发方式• 响应波长200-1100nm• 10µs积分时间• 光学分辨率(FWHM可达0.02nm) • 电子快门可以防止饱和 • 量子效率高达90% • 更高的系统灵敏度 • 优异的紫外光响应能力 • 满足低亮度级别应用的条件• 板载微控器 • 即插即用USB • 光学平台 • 安装和使用手册 • 采用附件 • 规格应用范围:适用于激光及环境检测、成分分析等各种测量,而且小巧方便,价格较国内的许多光学仪器都非常的低廉,可以看做是一款近民用的光学仪器,非常适用于科学研究已经广泛的应用在全国的各大院校当中
长春博盛量子科技有限公司 2021-08-23
供应激光功率计、激光能量计//长春博盛量子
产品详细介绍    
长春博盛量子科技有限公司 2021-08-23
安徽问天量子科技股份有限公司
安徽问天量子科技股份有限公司 2022-05-24
碳纤维增强碳化硅陶瓷基复合材料
碳纤维增强碳化硅陶瓷基复合材料耐腐蚀、耐高温、耐磨损、韧性高,能够广泛用于能源、交通、化工等领域的关键部件,比如摩擦制动材料、耐化学腐蚀叶片等。
东南大学 2025-02-08
长寿命磷酸盐钠离子电池正极材料
        研发团队针对NASICON型结构钠离子电池正极材料面临的瓶颈问题,通过新颖的合成方法和材料晶体结构设计理念,成功开发了具有自主知识产权的长寿命、高功率和低成本的钠离子电池及其超稳定的正极材料。材料合成方法简单,反应条件温和,不需要特殊设备,目前已完成实验室中试,具备了公斤级的制备能力。成果具有高的振实密度,可实现高体积能量密度,具有非常优秀的实用化潜力。         意向开展成果转化的前提条件:中试放大及产业化工艺开发资金支持
东北师范大学 2025-05-16
高性能低膨胀铝基复合材料及构件
卫星在轨运行和返回过程中需经历极端高低温环境,构件尺寸的稳定是保证卫星在轨高精度、返回高安全、任务高可靠的关键。针对卫星搭载的某宽带微波载荷与卫星本体材料之间热膨胀系数不匹配极易导致的载荷在轨及返回过程中载荷接收精度不稳定、信息传输不连续等问题。我校陈骏教授团队以原创的负热膨胀技术研发了具有轻质、热膨胀系数低、力学性能优异、尺寸稳定性好的高性能低膨胀铝基复合材料,并研制了系列关键连接内置件、环件等高性能低膨胀构件,首次将负热膨胀技术应用到我国的卫星上,填补了高性能低膨胀金属构件在工程应用领域的空白。该技术使得某宽带微波载荷与卫星本体之间热膨胀匹配性增强、界面应力大幅度减小,保证了卫星在轨与返回过程中信号高精度传输与接收,助力卫星成功返回。 图1 实践十九号卫星成功返回(图片来源国家航天局) 图2 高性能低膨胀铝基复合材料及构件应用于全球首颗可重复使用返回式技术试验卫星(图片来源央视新闻频道)
北京科技大学 2025-05-21
首页 上一页 1 2
  • ...
  • 22 23 24
  • ...
  • 224 225 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1