高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
荧光碳量子点/二氧化硅微球的研发
项目成果/简介: 荧光二氧化硅微球(CDs@mSiO2)负载抗体等生物大分子针对病毒、细菌和疾病体外检测试剂盒。 技术指标(创新要点等): 1、使用性能优越的碳量子点取代稳定性差、荧光量子产率低的有机荧光染料和毒性大的无机半导体量子点; 2、通过调节碳量子点的合成原料,使得碳量子点偶联锚定在二氧化硅微球上,且不会引起碳点的荧光猝灭从而有利于连接抗体或生物大分子等,产品具有快速、灵敏度和特异性高等优势。应用范围: 应用领域及预期经济社会效益等: CDs@mSiO2具有经济性、功能性和环境协调性等基本特性,CDs@mSiO2生产效率高、成本低、性能好等优点,可用于病毒、细菌和疾病体外检测。效益分析: 应用领域及预期经济社会效益等: CDs@mSiO2具有经济性、功能性和环境协调性等基本特性,CDs@mSiO2生产效率高、成本低、性能好等优点,可用于病毒、细菌和疾病体外检测。知识产权类型:发明专利知识产权编号:1、发明专利“一种两亲性碳量子点及其制备方法” CN201510213429.3; 2、发明专利“一种氮掺杂碳量子点的简易绿色合成方法” CN201410039846.6; 3、发明专利“一种高强度荧光水凝胶及其制备方法” CN201610060548.4; 4、发明专利“一种超大长径比的碳量子点聚苯胺复合纳米管及其合成方法”201610316536.3; 5、发明专利“一种新型的荧光磁性纳米管材料及其制备方法” CN201410185776.5。技术先进程度:达到国内先进水平成果获得方式:独立研究获得政府支持情况:无
安徽大学 2021-04-11
含有量子点的乙烯-醋酸乙烯酯胶膜及其制备方法和应用
本发明公开一种含有量子点的乙烯-醋酸乙烯酯胶膜的制备方法,包括以下步骤:用改性剂对半导体量子点的表面进行亲水性或亲油性改性,再将改性后的半导体量子点均匀分散在溶剂中,形成半导体量子点墨水,然后把半导体量子点墨水、乙烯-醋酸乙烯酯共聚物和助剂混合,经过热压成型或挤出成型,得到含有半导体量子点的乙烯-醋酸乙烯酯胶膜。该制备方法简单,可控性好,可操作性强,易于工业化生产。本发明还公开了一种含有量子点的乙烯-醋酸乙烯酯胶膜,应用于太阳电池,能有效提高太阳电池的利用效率。
浙江大学 2021-04-11
荧光碳量子点/二氧化硅微球的研发
荧光二氧化硅微球(CDs@mSiO2)负载抗体等生物大分子针对病毒、细菌和疾病体外检测试剂盒。 技术指标(创新要点等): 1、使用性能优越的碳量子点取代稳定性差、荧光量子产率低的有机荧光染料和毒性大的无机半导体量子点; 2、通过调节碳量子点的合成原料,使得碳量子点偶联锚定在二氧化硅微球上,且不会引起碳点的荧光猝灭从而有利于连接抗体或生物大分子等,产品具有快速、灵敏度和特异性高等优势。
安徽大学 2021-05-09
大功率激光照明用新型发光材料
研究团队以钇铝石榴石体系(YAG:Ce3+黄色荧光材料)和氮化物体系(CaAlSiN3:Eu2+红色荧光材料)为研究对象,率先开发出高导热YAG:Ce3+基复相黄色荧光陶瓷,其在50W∙mm-2的高光通量密度蓝光激光激发下,仍能保持优异的可靠性,该产品已与企业合作开发出汽车前照大灯。为了获得高显色指数的激光白光,通过考察晶粒择优取向、烧结助剂和组合烧结工艺等对材料致密化、微观结构的影响,首次制备得到致密的CaAlSiN3:Eu2+红色荧光陶瓷。
厦门大学 2021-04-11
力致发光材料体系的新设计策略
发现了聚集诱导热激活延迟荧光(AIE-TADF)材料具有力致发光现象(Angew. Chem. Int. Ed., 2015, 54, 874-878),然后又发现了一些AIE分子具有力致发光性能,并对其产生机理进行了深入研究(Chem. Sci., 2015, 6, 3236-3241;Chem. Sci., 2016, 7, 5307-5312;Chem. Sci., 2018, 9, 5787-5794)。2017年,武汉大学李振教授团队与池振国教授团队合作,发现了一些纯有机磷光材料具有力致发光现象,把力致发光拓展到有机磷光领域(Angew. Chem. Int. Ed., 2017, 56, 15299-15303;Angew. Chem. Int. Ed., 2017, 56, 880-884)。2018年,池振国教授团队又发现了力致长余辉发光现象(Chem. Sci., 2018, 9, 3782-3787),至此,纯有机材料的力激发发射荧光、TADF、磷光或长余辉等不同发光类型的力致发光拼图拼齐。2018年,池振国教授团队(Angew. Chem. Int. Ed., 2018, 57, 12727-12732)与青岛科技大学杨文君教授团队(Chem. Commun., 2018, 54, 8206-8209)同时研究发现,将主体材料(具有力致发光性能)与不同客体发光材料(不具有力致发光性能)进行复合,可以通过机械力激发不同发光颜色客体分子产生发光,从而把力致发光材料体系从纯有机单组分进一步拓展到复合体系,极大地丰富了有机力致发光材料体系。中山大学化学学院池振国教授研究团队提出利用一种更加简单的方法来精准设计力致发光复合材料体系的新设计策略。该策略设计的力致发光复合材料体系中,单独的主体材料和客体材料都不具有力致发光性能,但是通过主客体复合得到的复合体系则具有力致发光性能,实现了从无到有的力致发光。同时,客体材料的选择范围非常广,可以是纯有机发光材料、配合物磷光材料,也可以是无机量子点发光材料等等。通过改变客体材料的种类,非常容易调节力致发光的发光颜色、亮度、色纯度以及发光寿命等性能,极大地丰富了力致发光材料的研究内涵。结合光物理测试和理论计算,深入探究这类新型力致发光复合体系的激发过程和发射过程,并揭示了复合体系力致发光的激活机制是源于压电效应和主客体分子的能量转移。
中山大学 2021-04-13
新型有机电致发光材料的开发和应用
“有机电致发光材料的开发与应用”项目经过多年努力,开发出了十余种红绿蓝高性能有机发光材料,通过和韩国的CPRI以及中科院所合作测试器件性能,筛选出了一批合成路线简单、器件性能优异的材料,在实验室合成路线的基础上,研究中试合成工艺,从降低成本,简化操作,提高产率等方面优化工艺,为真正实现产业化铺路。我们自主设计多种含氮磷氟
南京大学 2021-04-14
一种低工作温度的量子点白光 LED 及其制备方法
本发明属于量子点 LED 封装领域,具体涉及一种低工作温度的量子点白光 LED,其中,LED 芯片固定设置在基板表面,量子点硅纳米球附着在 LED 芯片表面,透光壳体内表面附着有一层荧光粉胶,该透光壳体直接安装在基板上或通过一模塑料固定在基板上方,并将LED 芯片和量子点硅纳米球密封在内,透光壳体内还填充有封装胶将量子点硅纳米球和荧光粉胶隔离。本发明还公开了一种低工作温度的量子点白光 LED 的制备方法。本发明的量子点 LED 利用封装胶将荧光粉胶和量子点硅纳米球隔离,可降低量子点工作温度,减少重吸收损失,提高白光 LED 的发光效率;还能减少量子点的用量,控制量子点与荧光粉各自的发光光谱,得到所需的理想型发光。
华中科技大学 2021-04-13
一种水溶性过渡金属掺杂 ZnSe 量子点的合成方法
本发明公开了一种水溶性过渡金属掺杂 ZnSe 量子点的合成方法,属于材料制备技术领域。本发明 使用核壳结构纳米材料,采用离子置换的思路来合成掺杂量子点。该掺杂方法分为两步,第一步在氮气 保护的条件下合成 MnSe/ZnSe 的核壳结构纳米颗粒,第二步分别向 MnSe/ZnSe 纳米颗粒溶液中加入不 同的掺杂元素,随后在室温或者 100°C加热的条件下反应即可得到不同元素掺杂的 ZnSe 量子点。本发 明合成的掺
武汉大学 2021-04-14
一种超小尺寸钙钛矿量子点的室温制备方法
本发明公开了一种超小尺寸钙钛矿量子点的室温制备方法,属于超小尺寸钙钛矿量子点技术领域,包括以下步骤:S1、将CsBr、PbBr<subgt;2</subgt;和芳香酸粉末置于容器中,加入极性溶剂进行搅拌混合,得到透明前驱体溶液;S2、在前驱体溶液中加入胺溶液,得到混合溶液后添加至反溶剂中,得到量子点粗溶液;S3、向量子点粗溶液中加入金属盐溶液,搅拌后进行离心,向离心得到的上清液中加入有机溶剂,再次离心后得到量子点沉淀;S4、将量子点沉淀溶解于甲苯和DMF的混合溶液中,再次离心得到澄清透明的量子点溶液。本发明通过FeBr<subgt;3</subgt;协同芳香酸重构量子点界面,使量子点获得接近100%的PLQY,并展现出长期的稳定性。
复旦大学 2021-01-12
针对自旋流--新颖量子材料灵敏探针的研究
北京大学量子材料科学中心的韩伟研究员和谢心澄院士,以及日本理化学研究所的Sadamichi Maekawa教授,受邀在国际著名刊物《自然-材料》(Nature Materials)上撰写综述文章,介绍“自旋流--新颖量子材料的灵敏探针”这一新兴领域的前沿进展。 自旋电子学起源于巨磁阻效应的发现,在当时而言,自旋流指的仅仅是电子自旋的传播。随着自旋电子学的蓬勃发展,与相关研究的不断深入,新的自旋流现象与机制不断被拓展,相关研究证明一系列的粒子或者准粒子携带的自旋都能够形成自旋流,比如磁性绝缘体中的磁振子、超导体中自旋三重态和准粒子、量子自旋液体中的自旋子、自旋超导态等。尤其是对于量子材料而言,由于其往往具有独特的自旋性质,基于自旋流探针的研究方法就成为了表征量子材料物性的有效手段。 量子材料都是凝聚态物理与材料科学领域的研究前沿之一,其量子性质起源于诸多量子效应,包括低维尺寸效应,量子限域效应,量子相干效应,量子阻挫效应,能带结构的拓扑性,自旋轨道耦合,对称性限制等等。量子材料包括石墨烯,高温超导体,拓扑绝缘体,外尔半金属,量子自旋液体,自旋超流体等等。量子材料可以表现出诸多与自旋相关的量子性质,如二维过渡金属硫族化合物中的自旋-谷耦合,以及拓扑绝缘体当中的自旋-动量锁定等。因为量子材料的自旋属性在下一代的量子信息存储和量子计算科学当中的应用潜力,所以研究量子材料的自旋相关性质得到了广泛关注。 为了研究量子材料的自旋性质,发展一种易于实现和操控的高效工具显得尤为迫切与关键。幸运的是,在实验物理学家和理论物理学家的不懈努力下,成功的证实了自旋流探针能够作为量子材料的有效探测手段。一系列激发和探测自旋流的方法被提出并得以实现,从而证实了基于自旋流探针的量子材料物性研究的广泛适用性。 迄今为止,相关实验已经证实自旋流能够以超导体系中的自旋三重态库珀对和超导准粒子、量子自旋液体中的自旋子、磁性绝缘体和自旋超流体中的磁振子为载体进行传播,相关物理图像被总结在表1中。本篇综述文章着重介绍了在五类主要的量子材料体系中的基于自旋流探针的物性研究。第一类是超导材料体系,自旋流探针可以被用来验证自旋三重态的存在以及自旋动力学的演化过程。第二类是量子自旋液体材料体系,自旋流探针可以被用来验证自旋子携带的自旋角动量的有效传播过程。第三类是磁性绝缘体体系,自旋流以磁振子的形式传播,描述了磁有序材料当中的集体激发行为。第四类是杂化量子激发体系,自旋流以磁振子-声子杂化模式(磁振子-极化子)或磁振子-光子杂化模式(磁振子-极化激元)为载体进行传播。第五类是自旋超流体系,自旋流以玻色爱因斯坦凝聚中的自旋量子数为1的玻色子为载体进行传播,这种玻色子可以为电子-空穴激子或者是磁振子。 这些重要的研究进展已经充分证实了基于自旋流探针的物性表征对于量子材料而言是一种行之有效的研究手段。因此,这一方法将会极大的推动新颖量子材料的发现和相关物理性质的研究。例如量子霍尔和量子自旋霍尔材料,量子铁磁体和反铁磁体,六角晶格体系中的量子手征声子,自旋和力耦合的量子系统,超导体中的自旋动力学和铁磁与超导界面的超导能隙,自旋三重态超导体中的超导对称性,强耦合自旋系统中的杂化激发,拓扑磁振子材料,量子自旋液体中的自旋子,自旋超流体约瑟夫森效应,以及其他任何作为自旋流载体的量子态。另外,这一领域的进展还将推动自旋成像技术的发展,如利用自旋极化扫描隧道显微镜和氮空位色心显微镜技术对量子材料体系中自旋流的原位探测。
北京大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 224 225 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1