高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高效酿酒微生物功能菌剂的开发及应用
成果描述:项目把现代生物工程技术与传统酿造发酵技术相结合,利用自转化育种功能性菌株及各种酿酒发酵有益菌株,研制开发出各类新型微生物菌剂,既可有效利用和降低各类白酒生产原材料中残余淀粉含量,提高酿酒原料的利用率,增加出酒率,减少废弃丢糟的排放;还可根据不同人群饮食文化的嗜好,采用不同微生物菌种配合和工艺改造,生产出具有不同风格特点的新产品类型,实现经济、社会及环保效益的和谐统一。市场前景分析:本项目成果技术应用覆盖生物工程、生物化工、食品酿造等工程技术领域。由于核心技术是淀粉质材料的高效利用和酒精成分、风味物质的有效生成,因而相关技术成果适用于不同规模白酒发酵生产企业以及各类酿造食品及发酵饮料等传统和现代酿造生产企业选择性使用。本项目已在部分企业得到生产规模应用,产品市场前景良好。与同类成果相比的优势分析:针对各种原料的专用酿酒微生物制剂系列,为浅褐色粉粒,分别含多种高活性酿酒酶类和各种香型生香酵母,100斤粮食出酒率为50度白酒80-120斤。年产300吨,年销售收入300万元。国内领先。
四川大学 2021-04-10
高效竹活性炭的研制开发及应用前景
 活性炭是利用富碳的原料,通过物理或化学的方法,经炭化活化制得的产品。制造活性炭的原料包括各种煤炭(约占52%)、木材(约33%)、椰子壳和各种坚果壳、果核(10%)、以及其它农林副产品(少于5%)。煤炭作为一种重要的化工原料,特别是在我国的煤炭供应严重不足的情况下,用煤炭生产活性炭成本较高。近年来,由於我国天然林保护工程的实施,国内木材产量锐减,扩大木质活性炭生产规模也受到限制。而另一方面,国际市场上商业活性炭的价格持续下降。随着我国社会经济快速发展和世界经济一体化进程,寻找价格低廉且资源丰富的活性炭生产原料已成为我们的当务之急。竹材,是一种可再生的林业产品,它的化学组成与木材基本相同(纤维素、半纤维素和木素等),作为活性炭的生产原料有着广阔的前景。采用竹材生产活性炭不仅能获得经济效益、社会效益和生态效益,又能促进竹类资源的产业化开发与提升。研究中的有关成果(例如表面化学特性与相吸附能力的关系、一步法制备高效活性炭工艺、炭化过程的两步连续反应数学模型、和活性炭的表面官能团及其化学吸附机理的研究等)引起国内外同行的广泛关注,纷纷来信索取论文单行本,并通过电子邮件深入讨论。正是基于创造性地利用农业废弃物转换成高效的环保产品,2001年10月与新加坡南洋理工大学赖奕章(Lua Aik Chong)教授共享由Asian Economic Review 主办的2001年亚洲发明大奖(Asian Innovation Award 2001)。本人愿为我国竹材资源的合理利用、高效低价活性炭的开发生产、吸附分离理论体系的完善、以及开发活性炭的应用新领域贡献自己微薄的力量。
武汉工程大学 2021-04-11
基于转录调控网络的智善方开发及应用系统
1. 痛点问题 针对重大疾病与复杂性疾病(如肿瘤、代谢性疾病、心血管疾病、免疫性疾病等),目前西药的单靶点疗法治疗效果不佳,且易产生耐药性的行业痛点,开展天然植物、中药的功能研究和中药方剂开发。中药和中药方剂针对复杂性疾病的治疗具有独特优势,具有“多成分、多靶点、多途径”的特点,但是中医是实践医学,中医药虽然临床疗效显著,却无法用世界通行的“语言”,让国外同行也能理解和验证中医原理,所以中医药很难进入国际市场。 因此,根据国家“十四五”规划、2035年远景目标和健康中国发展战略的要求,“坚持中西医并重和优势互补,大力发展中医药事业”,本团队在中医药核心思维和理论指导下的,基于现代生命科学的方法,系统解析天然植物和中药的物质基础与作用机制,阐释中药配伍理论的科学内涵,以“守正-创新”模式实现高效、快速、精准的智善方(理论指导的、药效完善的方剂简称智善方)开发。 2. 解决方案 本团队开发的高通量靶向转录组筛选技术(high-throughput targeted transcriptome screening, HT3S),可对与特定疾病表型相关的基因进行定量分析,可并行筛选多种天然植物或中药。目前已绘制了7000余种方剂、中药、天然植物和单体的分子功能图谱,形成了分子版“本草纲目”。在此基础上,针对重大疾病与复杂性疾病(如肿瘤、代谢性疾病、心血管疾病、免疫性疾病等),通过数据挖掘和计算分析,评价中药方剂对不同信号通路的调控作用,计算可显著改善疾病失调信号通路的候选中药方剂,并开展体内外验证,开发了一系列药效明确、作用机制清晰的中药智善方。
清华大学 2021-09-16
不锈钢在强还原性介质中的腐蚀控制新技术及应用
不锈钢是工业、科技等领域应用最广泛的材料之一。不锈钢表面的钝化膜需要在氧化性环境中才能稳定地存在,因此不锈钢在氧化性环境中,例如大气、水环境、硝酸溶液等,具有良好耐蚀性,而在非氧化性或还原性环境例如高温稀硫酸、高温甲酸等介质中,由于表面的钝化膜不稳定,不能有效地保护基体,耐蚀性就很差;在含有能破坏钝化膜的有害离子的介质中,不锈钢的耐蚀性也很差。以化工、石化工业为例,在高温稀硫酸、高温甲、乙混合酸等介质中,奥氏体不锈钢腐蚀速度很快。由于温度较高,非金属材料在这种体系中不适用,国外部分企业采用耐蚀性更高的钛材或镍基耐蚀合金,但设备价格极其昂贵,同时材料来源和加工也非常困难。 该课题组研究开发了一种利用电沉积法在不锈钢表面制备钯系合金薄膜的技术,主要通过钯对不锈钢表面钝化性能的促进作用来提高不锈钢在非氧化性介质中的耐蚀性,并研究了在工程现场对不锈钢设备进行大面积施镀的技术。这种方法能够显著提高不锈钢在非氧化性腐蚀介质中的耐蚀性,例如,在沸腾稀硫酸和沸腾甲、乙混合酸中,镀钯不锈钢的腐蚀速率可以降低三到四个数量级,在含有微量Cl、Br离子的环境中,耐蚀性也显著提高。已获得国家发明专利授权2项,拥有完整的自主知识产权。
北京化工大学 2021-02-01
一种具有植物营养作用的复合材料及其工艺
本发明涉及一种具有植物营养作用与结构强度的复合材料及工艺。由泥炭 40-60%; 固化剂 10-30%;吸附剂 10-30%;营养添加剂 5-10%;附加剂 0-1%组成。泥炭除水破碎后, 按上述重量百分比称量好。在泥炭中加入吸附剂、营养添加剂、附加剂和固化剂拌匀, 制成本发明的复合材料。最后,或运到使用现场或预制库存。前者为运到现场压制成型, 填入种籽,铺设使用。后者为在生产地压制成型,固化后填入种籽,入库贮存。也可制 成涂敷的浆料,直接涂敷在各种造型表层,填埋种籽立体绿化。本发明工艺简单成本低, 具有植物营养作用和一定结构强度及与建筑物表面有亲和兼容性,可广泛应用于退化草 原、林地、沙漠和盐碱地等的改造,也可用于立体农业、无土栽培、人工造型绿化等。
同济大学 2021-04-13
科技部监督司发布《负责任研究行为规范指引(2023)》
《指引》共 11 个部分,覆盖了科研活动的主要方面和重点环节,针对科研人员、科研单位、科研资助机构、科技类社团、学术期刊等不同主体,提出了开展负责任研究应普遍遵循的科学道德要求和学术研究规范。
科技部 2023-12-22
井筒基岩冻结法施工解冻水害治理技术研究及应用
陕西彬长矿业集团有限公司、中煤科工集团西安研究院和西安科技大学针对矿井冻结法施工解冻后冻结孔环状空间垂向导水导致的解冻水害,首次提出了在有利地层施工环形措施巷,并结合插管引流注浆,截断环状导水通道的方法,并对设计理论基础、施工工艺、施工安全、过程监控等关键技术进行了深入研究,得出了系统的研究成果,为解决基岩冻结法施工解冻水害治理问题提供了新的思路和方法。该成果经陕西省科技厅鉴定为国际领先,并获得陕西省科学技术一等奖,申请专利 3 项。该成果在陕西省彬长集团胡家河矿井主立井全深冻结施工解冻后水害治理工程中得到成果应用,治水效果良好,取得显著的经济和社会效益。
西安科技大学 2021-04-11
石化装置设备可靠性评估(RCM)方法研究及工程应用
1.目的意义 以可靠性为中心的维修(Reliability Centered Maintenance):按照以最少的资源消耗保持装备固有可靠性和安全性的原则,应用逻辑决断的方法确定装备预防性维修要求的过程或方法。 RCM于上世纪60年代末起源于美国航空界。其目的是制定8-747飞机的预防性维修程序,确保其安全性;进入80年代,美国电力研究所(EPRI)把RCM概念用语指定为核电厂维修程序;到了90年代在核电厂得到了广泛应用,随后日本、加拿大、法国等也在其核电厂相继引入了
常州大学 2021-04-14
超级稻超高产精确栽培技术研究及应用
该成果系统地形成了超级稻超高产栽培新的生物学理论, 揭示了超高产栽培本质是“强支撑、 扩库容、 促充实”, 创立了“精苗稳前、 控蘖攻中、 大穗强后”的超高产栽培新模式;提出了水稻超高产栽培的稻田土壤质量指标精确化、生育进程与季节进程优化同步精确化、器官同伸壮秧培育精确化、群体起点构成精确化、施肥与水分管理精确化,进而以上述内容为主体构建了水稻超高产精确栽培技术体系,制订了超级稻超高产精确栽培技术规程。
扬州大学 2021-04-14
柴油机尾气治理关键核心技术研究及应用
 针对在用汽油车的排放污染物减排, 汽车学院研究人员联合本地的汽车一类资
西华大学 2021-04-14
首页 上一页 1 2
  • ...
  • 42 43 44
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1