高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
PVC低汞催化剂技术
南开大学李伟课题组与宜宾天原集团股份有限公司、湖南新晃新中化工有限责任公司合作所开发的具有自主知识产权的新型低汞触媒各项性能指标完全符合低汞触媒行业标准 HG/T4192-2011 要求,工业运行情况稳定,在转化率、选择性及使用寿命上具有优势,且其制备方法创新,制备工艺简单,绿色环保,已通过中国石化联合会组织的技术鉴定,具备向行业内进一步扩大推广优势,在国内处于领先水平。
南开大学 2021-02-01
高效纳米催化剂的研制
(1)以表面活性剂-高分子复合体系在溶液中形成的软物质团簇为模板,采用普通市售白炽灯为辐射源,在温和条件制备纳米钯催化剂,已获发明专利授权(授权号:ZL 201210262888.7)。(2)以表面活性剂为模板,采用普通市售白炽灯为辐射源,在温和条件下获得有良好光学性质的钯纳米薄片材料。该制备方法条件温和,制备得到的钯纳米薄片材料,发现在 340nm 附近出现等离子共振吸收峰,发明专利授权(专利号:ZL 201210210613.9)。(3)以六角相溶致液晶为软模版,分别在避光和可见光的条件下获得纳米 Pd电催化剂,适合用于作电催化剂。此项工作生产周期短,产物均匀性好,易于规模化生产。发明专利授权号:ZL 201210387737.4。(4)以表面活性剂-高分子复合体系为软模板,利用乙醇为还原剂,采用简易加热方式,首次合成了多面体纳米钯材料。发明专利授权号:ZL 201210403633.8。(5)采用超声波辐射技术,以表面活性剂-高分子复合体系构筑为软模板,获得一种具有菊花状纳米钯聚集体材料。
安徽理工大学 2021-04-13
非均相芬顿催化剂
本课题首先对常规的芬顿技术进行了探讨分析,研究合成所要的非均相芬顿催化剂。采用StÖber法制备Fe3O4@ SiO2复合粒子,复合合成膨润土/Fe3O4/Fe0催化剂,对催化剂的制备因素进行实验探讨,分析得到催化性能最优的合成条件,结合对两种催化剂进行表征分析,得到合成的最佳催化剂。其次,使用备Fe3O4@ SiO2复合粒子做为催化剂处理亚甲基蓝模拟废水,使用膨润土/Fe3O4/Fe0复合催化剂处理高效氟氯氰菊酯模拟废水,分别对其处理的废水的pH值、H2O2用量
南京工业大学 2021-01-12
非晶态合金加氢催化剂
非晶态合金是一类原子排列具有长程无序短程有序特点的材料,其具有优良的物理、化学和力学性能,已成为一种技术潜力很大的新型材料。非晶态合金作为催化剂的研究自二十世纪八十年代以来一直是催化学科研究的热点问题之一,大量研究成果见诸于报道,但由于种种原因,其工业化进程一直比较缓慢;南开大学开发出了粉末诱导化学镀法制备负载型非晶态合金催化剂的新方法,进而成功实现了催化剂生产的工业化,并在多个加氢领域中得到应用及试用。如,葡萄糖类加氢,硝基苯类加氢,烯烃,炔烃类加氢,肟基类加氢,腈类加氢等等。与常规的加氢催化剂
南开大学 2021-04-14
新型高熵合金催化剂
新型高熵合金催化剂可以直接代替原有的贵金属催化体系,大大减少催化剂价格及成本,可广泛应用于传统化工催化及新能源电催化领域。 一、项目分类 关键核心技术突破 二、成果简介 90%的化工品生产需要高性能催化剂,清洁能源汽车及燃料电池的商业化也离不开高性能催化剂。然而,现有商用催化剂一般为贵金属(价格昂贵)或简单合金(性能及稳定性差),无法实现高效、节能、环保的催化过程及清洁能源利用。 新型高熵合金催化剂可以直接代替原有的贵金属催化体系,大大减少催化剂价格及成本,可广泛应用于传统化工催化及新能源电催化领域。 以化工催化中氨气氧化制硝酸为例,工业界使用贵金属PtPdRh催化剂网格,价格高昂,并且反应温度为900℃。使用纳米分散的高熵合金催化剂(PtPdRhCoCe),整体贵金属用量减小90%以上,且反应温度降低200℃,可同时实现性能优异及高度稳定。 因此,通过针对不同反应进行高熵合金催化剂的开发,有望代替贵金属催化剂,大大提升反应活性及能源效率及产品产出率等。
华中科技大学 2022-07-26
PVC 低汞催化剂技术
南开大学李伟课题组与宜宾天原集团股份有限公司、湖南新晃新 中化工有限责任公司合作所开发的具有自主知识产权的新型低汞触 媒各项性能指标完全符合低汞触媒行业标准 HG/T4192-2011 要求,工 业运行情况稳定,在转化率、选择性及使用寿命上具有优势,且其制 备方法创新,制备工艺简单,绿色环保,已通过中国石化联合会组织 的技术鉴定,具备向行业内进一步扩大推广优势,在国内处于领先水 平。 项目特色: 选择硅烷偶联剂作为表面活性剂以及特殊金属氯化物对煤质炭 进行预处理,使活性炭表面羟基官能团转化为其他与特定金属离子有 强结合力的官能团,大幅提升活性组分负载牢固度,提高触媒抗积碳 能力,同时也有效提高了活性组分的分散性,并有效做到降低汞用量, 降低助剂金属用量,增强汞负载稳定性,提高低汞触媒活性及选择性, 延长低汞触媒使用寿命。该制备方法简便易行,适合工业化大生产的 需求。 市场应用前景: 本项目开发的低汞催化剂反应转化率,选择性均达到 99%以上, 使用寿命超过 8000 小时,活性组分氯化汞质量百分含量 6%以下,在 万吨级 PVC 工业装备上已装填催化剂 100 余吨,生产出合格产品 10 万余吨,创造产值近 7 亿元。该技术催化剂量产投资规模为 5000 万。 基于本技术的产品表观密度可达 40-100Kg/m3,具有质轻、价廉, 优良的保温隔热和隔音性能;优良的阻燃性能(可达 A 级或 B1 级)。 本项目社会贡献和经济效益在于优质的保温材料是降低能耗改善大 气环境的重要环节,可以为减少城市雾霾作贡献,需求量巨大,经济 效益可观。
南开大学 2021-04-13
Ptα-MoC1-x负载型催化剂及其合成与应用
本项目设计开发了一种新的碳化钼负载的原子级分散Pt催化剂,能够在低温(150 ~ 190 ℃)条件下实现对水和甲醇的高效液相重整产氢。其中,原子级分散铂-碳化钼双功能催化剂在190 ℃条件下,催化产氢速率可达~20000molH2/(molPt * h),活性较传统铂基催化剂提升了两个数量级。
北京大学 2021-02-01
低成本、高性能燃料电池催化剂的合成方法
本项目为高分散负载高活性贵金属质子交换膜燃料电池催化剂的可控制备技术。采用低成本的原位还原技术制备了高性能的非铂基燃料电池催化剂,可用于氢-氧燃料电池,甲醇-空气燃料电池等系统中。质子交换膜燃料电池因其理论比容量高(33 kWh/kg)、电流密度大、工作温度低、污染小等优点成为最先进的二次能源新技术。 燃料电池的核心技术是制备高效、长寿命的电极材料催化剂。目前的商用催化剂主要是高负载量的铂基催化剂。西安交通大学电信学院杨光教授及其课题组在高性能、低成本催化剂的合成和应用上取得重大突破,开发出了钯基燃料电池膜电极催化剂的新型制备工艺,该制备技术所需设备简单、工艺路径易于实现,合成的催化剂性能类似于目前掺加60%铂的商用催化剂,实现了催化剂的无污染快速制备。该合成方法的最大优点是将燃料电池催化剂的功率成本降低到目前商用催化剂成本的2%。
西安交通大学 2021-04-11
一种合成苯甲醛催化剂及制备方法和应用
一种合成苯甲醛的催化剂,该催化剂为硅胶嫁接铬席夫碱配合物。以氯丙基三甲氧基硅烷为偶联剂,环己烷为溶剂,硅胶为载体,活性组分为以salen为配体的铬席夫碱配合物,加热回流即可将铬席夫碱配合物嫁接到载体硅胶上。该催化剂制备方法简单,易操作,同时具有苯甲醇转化率高,苯甲醛的选择性好(最高可达100%),催化剂重复使用性能良好等特点。 苯甲醛,又称苦杏仁油,是最简单的、也是工业上最重要的芳香醛。它是制造染料的中间体,也是制造医药、香料、调味品、涂料等精细化学品的重要原料。苯甲醛的传统生产方法是以甲苯为原料,通过甲苯侧链氯化然后水解制得或作为甲苯氧化制备苯甲酸的副产物。在前一过程中,所生产的苯甲醛经常包含痕量的卤离子;在后一过程中,其选择性又较低。为了生产香料和药物工业上所需要的无卤的苯甲醛,选择性催化氧化苯甲醇是目前最主要的合成手段。其中,以双氧水为氧化剂,由于副产物只有水,是一条低污染,环境友好的路线。
南京工程学院 2021-04-13
一种合成苯甲醚催化剂及制备方法和应用
本发明涉及一种氟改性的复合氧化物,及其制备方法和在苯酚与甲醇反应合成苯甲醚中的催化应用。该催化剂的制备方法为:先制备含氟多元水滑石,然后将含氟多元水滑石煅烧从而制备出氟改性的复合氧化物。所制备的氟改性的复合氧化物具有较高的碱量,从而在苯酚和甲醇合成苯甲醚的反应中显出很高的催化活性。 由苯酚烷基化所生成的苯甲醚是一种重要的化工中间体而广泛地应用于香料、染料等生产领域,并且可用做油品抗氧剂和聚合物稳定剂。苯甲醚传统地合成方法通常要用到有毒的烷基化试剂,并在生产过程中产生大量的废液,从而导致严重的环境污染。随着化学工艺技术的不断进步,一些绿色的烷基化试剂和非均相催化剂逐步弥补了传统方法的缺点。“绿色”的碳酸二甲酯(DMC)可以在K2CO3、[BMIm]Cl离子液体、金属碘化物和碘代叔胺上成功地将苯酚烷基化。虽然这些催化剂催化活性较高,但仍存在着催化剂回收及产物分离困难的问题。因此,当务之急是开发高效的非均相催化剂。
南京工程学院 2021-04-13
首页 上一页 1 2 3 4 5 6
  • ...
  • 165 166 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1