高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
在厄尔尼诺长时间预测领域
厄尔尼诺现象,是赤道中、东太平洋海表温度持续异常升温的周期性气候现象,平均每2-5年发生一次,对全球气候具有重大影响。厄尔尼诺现象会造成全球不同地区的异常温度变化,以及干旱或强降雨等现象。及早并准确地预测厄尔尼诺的发生以及强度,对预防或降低其带来的全球范围内的经济、农业、社会等方面的损失意义重大。 2019年12月24日,由北京师范大学系统科学学院陈晓松教授参与指导的一篇关于厄尔尼诺预测的文章已在线发表在美国科学院院刊PNAS上,首次克服了长久以来困扰厄尔尼诺预测的“春季预测障碍” (即无法在厄尔尼诺发生的那一年的春季或更早给出准确预测),将对厄尔尼诺现象的发生,特别是强度的预测提前一年。 该文作者提出了一套基于信息熵理论的全新的方法——System Sample Entropy——用来计算厄尔尼诺区域(Nino 3.4)近海平面空气或海表温度的复杂度(包括温度随时间变化的无序性以及不同地点温度变化的同步性或相干性)。利用这一方法,作者们发现了Nino 3.4区域温度变化的复杂度与厄尔尼诺现象强度存在着非常强和稳定的线性关系,即一年内(1月1日-12月31日)Nino 3.4区域的温度变化复杂度越大,那么下一年发生的厄尔尼诺事件的强度就越大。基于这一发现,作者们提出了一套基于每年Nino 3.4 区域温度变化复杂度的大小(由该区域 System Sample Entropy 量化)来预测来年厄尔尼诺发生及其强度的方法。该方法目前成功的预测了1984至2019年期间10个厄尔尼诺事件中的9个事件的发生年份,以及24个没有厄尔尼诺现象发生的年份当中的21个,特别是对厄尔尼诺强度预测的平均误差仅为0.23摄氏度。 对于刚刚到来的2020年,基于文中提出的System Sample Entropy的方法,作者们预测厄尔尼诺将有很大概率会在本年下半年再次发生,并发展为一个中等强度甚至高强度的厄尔尼诺事件,其预测强度为1.48+-0.25摄氏度。 目前传统的厄尔尼诺预测方法只能在提前6个月范围内给出比较准确的预测,而这对于提前预防厄尔尼诺带来的一系列严重影响是非常局限的。这一新的预测方法,将对厄尔尼诺的预测时间提前到了每年一月。这对于提前采取行动,控制和降低这一现象所带来的一系列全球范围内的消极影响,将意义重大! 此工作由德国波茨坦气候影响研究所 (PIK)樊京芳博士作为通讯作者,PIK 的Jürgen Kurths教授,Hans Joachim Schellnhuber教授以及北京师范大学陈晓松教授等参与共同完成。陈晓松教授领导的研究小组多年来一直从事统计物理和复杂系统及相关课题的研究,特别是近年来专注于地球复杂系统的动力学演化及预测。
北京师范大学 2021-04-10
窄谱抗菌领域新成果
中国科大阳丽华副教授课题组首度发现,当把表面带负电荷的纳米球与细菌混合在一起时,纳米球会选择性吸附到球菌表面、却不吸附到杆菌表面,而且这种基于细菌形貌选择的识别机制受熵增驱动、且普适于组成和表面化学不同的多种纳米球。基于这种物理识别机制、以及ROS极度有限的有效活性半径(不足200 nm)(图1上),研究人员猜想如果纳米球具有光动力效应,那么就可能在光照下高效清除球菌、却不干扰杆菌(图1中和底)。这一猜想得到了采用不同光动力纳米球和多种细菌所做抗菌实验的证实。相关研究成果发表在期刊The Journal of Physical Chemistry Letters 上。
中国科学技术大学 2021-04-10
人才需求:相关领域院士。
相关领域院士。
山东麦丰新材料科技股份有限公司 2021-09-01
制作高性能、低成本电池器件的目标而采用简式构型器件新思路
实现制作高性能、低成本电池器件的目标而采用简式构型器件新思路的系列研究,论文第一作者为程春课题组博士生黄毓岚。 课题组总结了传统钙钛矿太阳能电池(PSCs)在降低缺陷密度和优化能级方面的常用方法,以简化其结构。此外,课题组对不同的无电子传输层或者无空穴传输层PSCs的发展进行了分类和讨论,包括它们的工作原理、实现技术、尚存的挑战和未来的展望。
南方科技大学 2021-04-14
功率MOS器件设计和制备技术
功率DMOS是一类重要的新型功率器件,具控制电路简单、开关频率高、可靠性好等优点,因此广泛应用于开关电源、汽车电子、DC/DC转换等领域,市场需求巨大,目前在功率分立器件领域占据了最大的市场份额。本团队在功率DMOS器件的研究方面有丰富的技术积累,开展了大量前沿性研究和产业化研究,目前本团队在功率DMOS领域累计授权发明专利超过50项,能够量产的产品型号近百种。
电子科技大学 2021-04-10
毫米波新基片结构器件
2016国家自然科学奖二等奖,基片集成类导波结构是近十几年来微波毫米波学界发展起来的一种新型高性能平面导波结构。基片集成类导波结构具有极低的电磁泄露和互扰,其品质因素和功率容量远高于传统平面传输线。国内外数百所大学和研究机构都对其开展了大量研究,它也成为微波毫米波领域最受关注的研究分支之一。 项目组作为国际上该领域的主要贡献者之一,以基片集成类导波结构的工作机理与创新应用为主线,对这类结构及器件的传输特性、损耗机理等基础科学问题进行了深入研究,提出了半模基片集成波导等多种新型平面导波结构,发展了相应的设计方法,并发明了一系列新型高性能微波毫米波器件,部分器件已得到实际应用。
东南大学 2021-04-11
全固态太赫兹前端关键器件
针对太赫兹高分辨雷达和通信系统应用需求,研究了常温固态太赫兹连续波发射和接收的总体方案和实现技术,研究了太赫兹平面肖特基势垒二极管非线性模型的精确模型,提出了太赫兹高效倍频电路和低损耗分谐波接收电路的拓扑结构,掌握了太赫兹倍频器和分谐波混频器的优化方法,解决了固态太赫兹关键技术的工艺难题,突破太赫兹连续波发射和接收的关键技术,打破国外技术封锁,提高自主创新能力,形成自主知识产权,相关技术水平达到国际先进,为我国太赫兹技术的发展和太赫兹系统的应用奠定技术基础,提供技术支撑。
电子科技大学 2021-04-10
微电子器件高效冷却技术
小试阶段/n通过发展被动式和主动式冷却技术能实现典型移动装备和电子器件的空间冷却需求,具体包括热压/风压自然换热冷却、相变热管换热冷却等被动式技术,半导体热电制冷冷却、喷射冷却和合成射流冷却等主动式冷却技术,获省自然科学一等奖。成果市场前景:有散热需求,就有应用前景。
武汉大学 2021-01-12
电子器件的高效散热技术
随着微电子技术的发展,电子器件的热流密度越来越高,散热已成为其技术发展的主要障碍之一。本项目采用直接液体浸没的沸腾换热方式,开发了高效沸腾换热微结构面,可极大幅度提高散热性能,在电子器件温度低于其正常操作上限温度85oC的条件下,散热热流密度可达150W/cm2以上。沸腾强化换热技术往往在微重力条件下由于气泡难以脱离导致性能恶化而无法应用。近期在微重力条件的实验表明该技术即使在微重力条件下,依然能充分利用热毛细现象进行强化换热,显著提高换热性能。因此,该技术可应用于地面和空间的电子器件高效散热。
西安交通大学 2021-04-11
节水灌溉器件的快速开发技术
滴灌是节水效率最高并能实现水肥自动灌溉的精准农业灌溉技术,在蔬菜、花卉、棉花、果树等种植中广泛应用。滴灌系统的灌水器在使用时容易发生堵塞一直是国际上的难题。本技术针对这一难题,提出了灌水器基于迷宫流道流动特性的抗堵设计和一体化开发方法,开发了具有自主版权的专用设计软件。应用该软件与快速成形技术开发出系列化的新型灌水器,使开发周期显著缩短,单循环开发时间由原来的3~5个月缩短到3~5天,而开发成本由5万元左右降低到2千元以下。相关研究成果获得国家技术发明二等奖。
西安交通大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 44 45 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1