高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
全固态电池正极/电解质界面研究
项目成果/简介:硫化物固态电解质(LGPS)由于拥有与液态电解质接近的室温离子电导率,因此被视为下一代高能量密度电池的候选体系之一。但是,由于硫化物固态电解质较窄的电化学窗口(如Li10GeP2S12,1.7~2.1 V vs. Li/Li+),在与较高工作电压的LiCoO2氧化物正极(LCO)匹配时会发生一系列副反应,在界面处堆积低电导的氧化副产物(如Li3PS4, S, GeS2),同时LGPS和LCO电化学势的不匹配还将导致界面处产生空间电荷层(SCL),这些因素都将极大地增加固态电池的界面阻抗,进而使得固态电池的性能迅速衰减。目前,解决氧化物正极-硫化物固态电解质界面不匹配问题的主要途径为在氧化物正极表面包覆一层过渡层,用以缓冲正极和电解质界面的电势不匹配问题。 通过简单易行的固相包覆方法,首先将粒径为10 nm二氧化钛纳米颗粒均匀分散在钴酸锂表面,再通过高温烧结处理在钴酸锂表面形成一层约1.5纳米保护层。对照实验,FIB-TEM原位观察和XPS佐证表明通过高温原位反应钴酸锂表面将形成Li2CoTi3O8尖晶石相(LCTO)。具有稳定三维尖晶石结构的LCTO晶体在钴酸锂工作的电压区间依然能保持结构稳定,与钴酸锂基体之间具备较强的键合,同时具有高的锂离子扩散能力(Li+= 8.22×10-7 cm2 s−1),低电子电导(2.5×10-8 S cm-1)。这些性质将有助于在LCO和LGPS之间形成有效的电压降,保持界面稳定性的同时提供快速的离子迁移通道。理论计算表明,相较于LCO/LGPS界面,通过引入LCTO中间层产生的两个替代界面,即LCTO/LCO和LCTO/LGPS具有更强的热力学稳定性和更强的界面亲和力。
厦门大学 2021-04-10
高速大容量固态数据记录仪(产品)
成果简介:高速大容量固态数据记录仪是以6UcPCI高密度NANDFlash存储板为数据记录载体,基于串行RapidIO高速互联技术构建的模块化、可扩展的实时数据存储系统。该系统可提供稳定可靠的高速数据记录与回放功能,记录速度可达1200MB/s,记录容量可扩展,最高可达6TB。系统具有独立的可方便拆卸的存储体,对外接口可替换。 应用范围:可以广泛应用于机载、舰载、车载等恶劣工作环境下海量数据的高速可靠存储。 技术特点:
北京理工大学 2021-04-14
全固态太赫兹前端关器键件
成果简介: 1、主要功能和应用领域 针对太赫兹高分辨雷达和通信系统应用需求,研究了常温固态太赫兹连续波发射和接收的总体方案和实现技术,研究了太赫兹平面肖特基势垒二极管非线性模型的精确模型,提出了太赫兹高效倍频电路和低损耗分谐波接收电路的拓扑结构,掌握了太赫兹倍频器和分谐波混频器的优化方法,解决了固态太赫兹关键技术的工艺难题,突破太赫兹连续波发射和接收的关键技术,打破国外技术封锁,提高自主创新能力,形成自主知识产权,相关技术水平达到国际先进,为我国太赫兹技术的发展和太赫兹系统的应用奠定技术基础,提供技术支撑。 2、特色和先进性 1)国内首次报道了400GHz以上频段的太赫兹源,输出功率大于5mW 2)首次开展了太赫兹高功率多管芯二极管的三维电磁模型研究; 3)国内首次报道了220GHz、380GHz和664GHz分谐波混频器,变频损耗指标由于10dB; 4)国内首次开展了基于光电结合的太赫兹高速无线通信系统实验,通信速率大于12.5Gbps; 5)太赫兹核心模块已应用于太赫兹成像和通信系统中。 3、技术指标 太赫兹倍频器指标对比 频段 国外研究机构 电子科技大学 美国VDI FARRAN 仿真 实测 59GHz 26dBm 20dBm 23dBm 17dBm 91.5GHz 22dBm 15dBm 16dBm 13dBm 110GHz 20dBm 12dBm 16dBm 12.5dBm 212.5GHz 15dBm 4dBm 13dBm 7dBm 340GHz 15dBm 4dBm 13dBm 4.5dBm 420GHz 9.5dBm 无 12dBm 4dBm 太赫兹分谐波混频器指标对比
电子科技大学 2015-12-24
车载含水乙醇低温重整制氢装置
已有样品/n本实用新型公开了一种车载含水乙醇低温重整制氢装置,其原理是利用汽车发动机余热将含水乙醇经过两级催化重整为富氢气体,再将富氢气体通入汽车发动机与燃油进行混合燃烧。本实用新型利用两级蜂窝钛网结构能够产生较大的催化剂接触表面积,有利于重整制氢装置的小型化,使车载在线产氢的目的成为可能;两级催化的结构实现了催化剂的相互协同作用,解决了使用单一催化剂乙醇转化效率和氢气选择性较低等问题;在低温环境下通过碱性催化剂的相互协同作用,解决了催化剂的烧结和积炭问题,提高了催化剂的使用寿命。本实用新型利用汽车尾气余热,实现了汽车在线掺氢的目的以及提高化石燃料的燃烧效率,降低了汽车发动机有害物质的排放量。
武汉理工大学 2021-04-11
生物质气化制取富氢燃气系统
项目简介 本成果针对农村废弃生物质资源丰富,以及秸秆禁烧国家政策的实际情况,采用感 应加热原理开发生物质气化技术,采用该技术研发的生物质气化系统具有加热均匀,节 能环保,运行连续,结构简单等优点,可利用秸秆、稻壳、锯末等生物质原料制取富氢 燃气。 性能指标 系统能耗: <10kW; 覆盖面积:100m2 ; 富氢燃气热值:>9MJ/m3 适用范围、市场前景 适用范围:适用于新能源企业开发新型节能项目,解决农场、农村秸秆或其他生物 质废弃资源处理问
江苏大学 2021-04-14
超快高储能柔性器件
本项目以制备超快高储能柔性器件为导向,建立基于界面纳米复合材料的新技术。通过水热法和电化学方法在柔性导电基底上构建纳米阵列/金掺杂二氧化锰的三维纳米复合电极,作为正极;通过水热法和热处理法在柔性导电基底上生长多孔氧化铁纳米复合材料,作为负极,组装全固态薄膜器件。利用纳米复合材料的多方面优势加速电子/离子在活性材料中的传递,进而达到超快高储能的目的。基于纳米复合材料的全固态薄膜器件可展现出超快充电能力(10 V/s),比常规电容器的充电时间快10-100倍。这是国际上基于金属氧化物赝电容薄膜型超级电容器研究领域的一个重大突破。此外,本项目以开发超快超柔储能器件为导向,开发了一种热力学诱导自发组装和原位掺杂结合碳热还原的方法来实现石墨烯纳米筛粉体和薄膜的宏观可控制备,解决了传统石墨烯材料纵向物质传输差的局限。通过控制碳热温度,可以调节石墨烯纳米筛表面的孔密度,即孔径大小可控(10~100 nm)。与传统石墨烯薄膜电极相比,石墨烯纳米筛表面丰富的孔结构使得其作为电极材料时拥有更大的比表面积,而且电解质离子可以在垂直于平面的轴向上传递,缩短了离子传输路径。
华中科技大学 2021-04-10
柔性储能器件及传感器件
利于层状纳米材料比表面积大的特点,在碳基柔性衬底上制备了高性能柔性 超级电容器,及葡萄糖传感器。超级电容器的能量密度最大为50.2Whkg-1,功 率密度为8002 W kg-1 at 17.6 Wh kg-1,充电1分钟能点亮两只绿色LED灯3 到5分钟。性能处于国际先进水平,成果先后发表于JALC0M , 714(2017) 63-70; 763 (2018) 926-934 等。
重庆大学 2021-04-11
城轨交通用超级电容储能系统
对于城市轨道交通,再生制动能量的充分利用是实现节能的重要措施。其中,超级电容储能系统是目前极具竞争力的解决方案。它的主要功能包括提高再生制动能量利用率,降低牵引能耗,减少再生失效,抑制网压波动。 北京交通大学开发了车载和地面两种类型的超级电容储能系统样机。掌握了储能系统优化配置、大功率双向DC/DC变流器、超级电容充放电控制、能量管理策略等关键技术。该系统也可应用于工程机械、电动工具等其他领域。
北京交通大学 2021-04-13
城轨交通用超级电容储能系统
项目简介: 对于城市轨道交通,再生制动能量的充分利用是实现节能的重要措施。其中,超级电容储能系统是目前极具竞争力的解决方案。它的主要功能包括提高再生制动能量利用率,降低牵引能耗,减少再生失效,抑制网压波动。 北京交通大学开发了车载和地面两种类型的超级电容储能系统样机。掌握了储能系统优化配置、大功率双向DC/DC变流器、超级电容充放电控制、能量管理策略等关键技术。该系统也可应用于工程机械、电动工具等其他领域。
北京交通大学 2021-04-14
抽油机变频储能技术应用
地面采油系统耗电设备主要为抽油机,在抽油机带动油杆上、下往复运动过程中,电动机会进入重负荷—轻负荷—空载—发电—空载—轻负荷—重负荷的循环状态。当抽油杆上升时,由于电动机需要克服液柱负载、油杆负载、摩擦阻力等而处于重载荷运行状态;当抽油杆下降时,由于电动机需要克服较小的负载而处于轻负载或空载状态。 由于抽油杆、光杆、液柱是有一定重量的,再加上油管、油杆的形变,导致抽油机启动的瞬间,需要克服较大的启动负荷;当抽油机正常运行后,需要的功率又大幅减少,由于液面深度是动态变化的,抽油载荷也随
常州大学 2021-04-14
首页 上一页 1 2
  • ...
  • 8 9 10
  • ...
  • 34 35 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1