图像自动标注和模型训练技术在工业视觉中的应用
1. 痛点问题
工业视觉场景下普遍存在缺陷样本数量少、难采集,已有标注方案无法完全发挥样本数据效用等问题。在工业视觉应用场景中,产线整体生产良率均已达到相当水平,人工可识别的缺陷样本数量相对较少,且采集难度较大。制造生产环节对产线效率要求较高,模型训练难以实现精度与效率上的平衡。
2. 解决方案
本项目将最新的少样本学习、连续学习、模型压缩与优化技术,与工业场景中的缺陷检测需求深入结合,致力于工业视觉自主知识产权软硬件一体化装备研发。针对玻璃深加工与半导体晶圆宏观缺陷检测,本项目已完成工业视觉全流程视觉感知算法、人工智能算法研发平台、玻璃智能一体检测设备、晶圆宏观缺陷检测设备等智能设备的原理验证和装备试制,同时有多项智能设备在研。
本项目在玻璃与半导体缺陷检测中,基于图像自动标注方法完成少样本场景下的数据采集与标注,通过弱监督学习和连续学习方法完成有效模型构建,并针对长尾数据集设计模型训练和优化方法,实现高效工业视觉感知计算。针对工业视觉场景,本项目集成视觉感知算法能力,研发人工智能算法研发平台,该平台秉承低代码化、可视化等原则,打造包含数据采集与标注、算法训练与评估、模型压缩与优化、应用部署与管理的数据闭环。
合作需求
寻求浮法玻璃深加工、半导体加工与制造等行业企业合作。
清华大学
2021-12-23