高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
移动式C形臂X射线术中三维成像与智能识别系统
本项目研制具有自主知识产权的移动式C形臂X射线术中三维成像与智能识别系统,并进行商品化和产业化。项目研究等中心自动控制技术、X射线图像采集技术、二维X射线图像的三维重建与成像技术以及基于人工智能的人体物质识别(识别肌肉、骨骼和脂肪等组织)技术。系统适用于多种多样的临床需求,特别是高要求的手术作业,尤其适用于介入放射学、血管外科介入性心脏病(如冠状动脉形成术),骨科手术和神经外科等领域的需求,在国内医疗领域属于前沿领先水平,其市场前景广阔,具有巨大的
南京大学 2021-04-14
一种纸币图像识别方法
本发明提出一种纸币图像识别方法,它用训练集中的纸币图像训练分类器,并用所训练的分类器对所获取的待测纸币图像进行币种、面值、面向和版本的识别,具体包括如下步骤:1)对纸币图像进行预处理;2)取纸币图像中的若干个图像块;3)计算每个图像块的图像特征,组成纸币图像的特征向量,作为训练集中图像或待测图像的各图像块的特征向量;4)利用训练集中的图像的各图像块的
浙江大学 2021-01-12
一种基于边缘几何特征的图像识别方法及系统
本发明公开了一种基于边缘几何特征的图像识别方法,包括对工件的原始图像进行滤波处理;对上述滤波处理后的图像进行二值化处理;对二值化处理后的图像查找获得轮廓序列集;从上述轮廓序列集中筛选出合格的工件轮廓;确定上述工件轮廓的最小外接矩形,并确定上述工件轮廓的中心点;沿上述最小外接矩形的四条边的方向截取上述工件轮廓的四个子序列;使用边缘几何特征算子计算上述四个子序列中各子序列的能量值;确定上述四个子序列中能量值最大的子序列,并确定工件的方向角。本发明还提供了相应的图像识别系统。本发明无需建立工件的模板数据库
华中科技大学 2021-04-14
一种基于边缘几何特征的图像识别方法及系统
本发明公开了一种基于边缘几何特征的图像识别方法,包括对 工件的原始图像进行滤波处理;对上述滤波处理后的图像进行二值化 处理;对二值化处理后的图像查找获得轮廓序列集;从上述轮廓序列 集中筛选出合格的工件轮廓;确定上述工件轮廓的最小外接矩形,并 确定上述工件轮廓的中心点;沿上述最小外接矩形的四条边的方向截 取上述工件轮廓的四个子序列;使用边缘几何特征算子计算上述四个 子序列中各子序列的能量值;确定上述四个子序列中能量值最大的子 序列,并确定工件的方向角。本发明还提供了相应的图像识别系统。 本发明无需建立
华中科技大学 2021-04-14
一种在图像中识别物体的方法
成果描述:本发明申请要解决的问题是,对环境噪声较大的场合,根据对象的结构进行实时识别。本专利建立一种实时的智能物体检测算法,根据动态区域连通性提取物体的结构特征,通过矩函数映射得到特征进行识别。市场前景分析:本发明最主要的任务是弱化了形态的特征,强调结构,从而加强的了抗噪能力,并通过概率模型,给出了精确的数据概率分析。已在实际的应用(自然生态保护区的熊猫识别)当中取得显著效果。与同类成果相比的优势分析:本发明主要面向复杂环境中颜色特征明显的对象,从对象的颜色特征出发得到结构,对结构进行判断从而进行识别。
电子科技大学 2021-04-10
基于生成图像数据的水下目标检测与识别
一、项目简介 水下目标检测与识别,是水下机器人等相关系统能够被高效应用的前提。然而现有系统难以应对水下图像能见度较低,对比度差,存在颜色漂移和边缘模糊等问题;另外,水下图像样本稀少且缺乏足够的变化性,使得相关基于机器学习的目标检测与识别系统由于缺乏训练样本而无法有效应用。 二、前期研究基础 项目利用深度学习等新的理论突破,提出两种解决方案,一种是通过结合水下成像原理与深度风格迁移、生成对抗网络等算法,由普通光学图像生成水下图像,构建水下图像目标检测与识别仿真库,该数据库一方面数据量大且具有较大的变化性,也即场景与目标均具有较大的变化性;另一方面,由于是由普通光学图像迁移获得,因而也可以直接应用普通光学图像自身的标签信息,无需再对其进行标注。另一种是研究基于水下退化图像处理算法的检测和识别系统,解决由水下图像的色彩漂移和细节丢失等退化现象带来的目标检测和识别问题。同时通过水下退化图像处理模块和检测识别系统的联合优化技术,可以实现退化图像的增强方法与检测识别系统的最佳匹配。在保证处理后的退化图像性能指标的前提下,进一步提升水下图像的目标检测识别性能。 三、应用技术成果 1)基于深度学习风格迁移的水下图像生成效果示例 a为自然场景图像中的目标检测结果;b为模拟生成的水下风格图像及其目标检测结果;c为图像增强后的目标检测结果。 四、合作企业 无
厦门大学 2021-04-11
基于GPS定位的视频图像路面采集识别系
一、 项目简介随着公路交通运输业的发展,人们对公路路面质量及其养护提出了更高的要求。本系统的实现既可以提供有效的路面信息,还能实现自动化的图像识别和信息定位,为其制定合理的养护决策提供科学依据,从而提高公路的养护水平。二、 项目技术成熟程度该项目技术成熟,在实际路面中进行了实际检验,运行稳定。三、 技术指标项目发表高水平学术论文7篇,被三大检索收录6篇。四、 市场前景系统可以为省内和国内的公路养护部门节约大量的人力、物力和财力,减少人工进行公路检测的风险,为他们提供有效的路面信息,为其制定合理的养护决策提供科学依据,从而提高公路的养护水平。五、 规模与投资需求本系统售价5万(包括培训),加上服务器及数据库系统软件,总投资预计10万元。六、 生产设备该系统只需配备一台服务器,及相应的数据库系统软件即可,服务器投资预计3万元(采用联想服务器),数据库系统软件(sql server 2万)。七、 效益分析使用该系统为养护部门制定合理的养护决策提供科学依据,从而提高公路的养护水平。具有良好的经济效益和社会效益。八、 合作方式技术服务、协作开发、提供咨询,具体事宜面议。九、 项目具体联系人及联系方式侯向丹,e-mail: xdhou@hebut.edu.cn十、高清成果图片
河北工业大学 2021-04-11
基于深度学习的图像识别云服务平台
基于深度学习的图像识别云端服务平台,能够 通过云计算框架训练深度学习算法模型,对图像进行目标检测 和识别。平台拟采用云端 API 的形式,为其他客户端的提供简 单易用的图像识别服务,将目标识别应用到互联网及移动应用 场景中,推动移动互联网的进步。 该平台实现如下功能:1.模型训练:平台能够基于用户给 定的不同行业的数据,训练相应的精细化分类模型。2. 图像识 别:平台能够根据预先训练好的识别模型,对用户
合肥工业大学 2021-04-14
一种在图像中识别物体的方法
本发明申请要解决的问题是,对环境噪声较大的场合,根据对象的结构进行实时识别。本专利建立一种实时的智能物体检测算法,根据动态区域连通性提取物体的结构特征,通过矩函数映射得到特征进行识别。
电子科技大学 2015-01-14
图像标注系统
设计并实现了一个图像半自动标注系统,以减轻自动驾驶场景中图像数据标注的工作量。该系统打通图像自动标注流程,利用基于深度学习的目标检测方法对图像中的交通目标进行预标注,随后交于用户检查标注结果,并自动整理输出图像标注数据。此外还开发实现了大量实用的图像标注功能,以支持用户进行图像标注,例如2D目标标注、交通标志标注、车道线标注、车灯标注、施工区域标注、目标跟踪标注、2.5D目标标注、停车位标注等。该系统投入使用后大幅提升了图像标注工作的效率,道路交通目标的平均标注速度相较于手工标注提升了115%。 相关技术指标:自动标注系统的平均标注速度为280张/人天。标注算法的漏检率为6.2%、准确率为92.3%、贴合率为81.2%。 技术指标满足系统设计要求,实际效果令人满意。 技术创新点: 1)实现了标注流程的半自动化,大幅减轻在标注流程上的工作量。 2)在标注功能上,相比已有可获得的工具,在交通目标的类型及标注特性上有了较大扩充。 3)在标注性能上,应用了成熟、领先的目标检测算法和机制如ResNeXt、注意力机制、Focal Loss、GIoU Loss等,并进行若干改进,设计了定位置信度模块、倒金字塔注意力模块、稀疏结构注意力机制等,显著提升了模型的检测效果,特别是小目标以及全局性关联目标检测性能。
上海理工大学 2023-07-18
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 643 644 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1