高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
美国Lake Shore 218温度监视器台式监控器低温监测仪表 8个通道
产品介绍: 美国 Lake Shore 218是功能丰富的温度监视器8个传感器输入,几乎可以与任一个二极管或电阻型温度传感器配合使用。连续显示所有8个通道,显示单位是K, °C, V 或 Ω。测量输入是按低温测量的要求设计的,但是监视器的低噪音、高分辨率、宽量程范围等特点,使其应用在非低温的环境中也是理想的。  218温度监视器台式监控器低温监测仪表 主要特点 • 使用合适的传感器,操作时的*低温度可以达到1.2K • 8个传感器输入 •支持二极管和电阻型传感器 • 连续8个输入显示为K, ℃, V 或 Ω为单位的读数 • IEEE-488 和 RS-232C 接口,模拟输出和报警继电器 • 有2个型号可供选择:218S 和 218E • CE认证  218温度监视器台式监控器低温监测仪表   传感器输入显示 美国 Lake Shore 218温度监视器具有八个恒流源(每个通道一个),可以与多种传感器配合使用。输入设置可以通过前面板完成或通过计算机接口完成。监视器的八个通道分为两组,每组中的四个通道必须连接一种类型的传感器(比如四个通道全都是铂电阻传感器,或者全都是硅二极管传感器)。 两个高分辨率的A / D转换器可以提高218温度监视器的更新速率。因为不需要等待电流源转换,所以218比其它品牌的扫描式监视器能更快地读取到温度读数。218温度监视器每秒可读取到16个温度读数,也就是说每个通道每秒可读到2个温度读数。还可以关掉部分输入通道的方法来获得更高的读数率。   温度曲线 美国 Lake Shore 218温度监视器含有标准的硅二极管和铂电阻传感器的温度曲线。它每个通道可以储存一条200点的用户自定义曲线,所以可以支持多种传感器类型。 Lake Shore校准的CalCurves™同样可以被存储为用户曲线。内置的SoftCal™1算法也可以将DT-470系列二极管和铂电阻的温度曲线进一步改善,做为用户曲线储存到218 中。 Lake Shore用在硅二极管和铂电阻传感器上的SoftCal™ 算法,对于用户希望得到比标准曲线更高的精度,但并不需要传统的标定的情况是很好的解决方案。 SoftCal™ 算法采用几个已知的温度参考点点来修正传感器的标准曲线,从而达到更高的精度。 接口 美国 Lake Shore 218温度监视器可获得的计算机接口有并口(IEEE-488,仅218S有此接口)和串行计算机接口(RS-232C)。每个输入都有高、低值报警,并且提供锁定和非锁定操作。218S中的八个继电器可用于故障报警或执行简单的开关控制。218S包括两个模拟电压输出,用户可以选择输出数据的比例和数据进行输出,包括温度、传感器单位、或线性方程的结果。在手动控制下,模拟电压输出也可以作为一个电压源用于其它应用程序。   显示 美国 Lake Shore 218温度监视器八个显示位置的内容用户可配置的。读出的数据源是温度单位、传感器单元和数学*算函数结果。为使用方便,输入的通道号和数据源一直显示在前面板。显示的数据每秒更新两次。 1 Lake Shore SoftCal™的校准对于硅二极管和铂电阻传感器需要更高精度时是比较好的解决方案,但是这种校准并不是真正的传统意义上的校准。SoftCal校准是采用标准曲线的可预测性来改善单独传感器在几个已知温度参考点的精度。  
北京锦正茂科技有限公司 2022-11-03
动态云服务请求下数据中心多能源的在线控制方法和系统
本发明公开了一种动态云服务请求下数据中心多能源的在线控 制系统,包括系统状态监控模块、负载调度模块和多源供能系统管理 模块,负载调度模块包括延时敏感型请求调度子模块和延时容忍型作 业调度子模块,系统状态监控模块用于每隔一段时间接收来自用户的 云服务请求,判断云服务请求是延时敏感型请求还是延时容忍型作业, 并在云服务请求是延时敏感型请求时将该云服务请求发送到负载调度 模块的延时敏感型请求调度子模块,在云服务请求是延时容忍型作业 时将该云服务请求发送到负载调度模块的延时容忍型作业调度子模 块。本发明能够优化数据中心供能系统的长期运营开销,并且不需要 提前获取任何系统数据或者假设任何的稳态分布。 完成人:金海、刘方明、邓维 
华中科技大学 2021-04-11
固支梁T型结间接加热在线式未知频率微波相位检测器
本发明的固支梁T型结间接加热在线式未知频率微波相位检测器由六端口固支梁耦合器,通道选择开关,微波频率检测器,微波相位检测器级联构成;六端口固支梁耦合器由共面波导,介质层,空气层和固支梁构成,两个固支梁之间的共面波导长度为λ/4;六端口固支梁耦合器的第一端口到第三端口、第四端口以及第一端口到第五端口、第五端口的耦合度分别相同,待测信号经第一端口输入,由第二端口输出下级处理电路,由第四端口和第六端口输出微波相位检测器,由第三端口和第五端口输出通道选择开关;通道选择开关的第七端口和第八端口接间接加热式微波
东南大学 2021-04-14
固支梁T型结间接加热在线式已知频率微波相位检测器
本发明的固支梁T型结间接加热在线式已知频率微波相位检测器由六端口固支梁耦合器、微波相位检测器和间接加热式微波功传感器级联构成;六端口固支梁耦合器由共面波导,介质层,空气层和固支梁构成;共面波导制作在SiO2层上,固支梁的下方沉积介质层,并与空气层共同构成耦合电容结构,两个固支梁之间的共面波导长度为λ/4;六端口固支梁耦合器的第一端口到第三端口、第四及到第一端口到第五端口、第六端口的功率耦合度相同,待测信号经六端口固支梁耦合器的第一端口输入,由第三端口和第五端口输出到间接加热式微波功率传感器,由第四端
东南大学 2021-04-14
固支梁T型结直接加热在线式未知频率微波相位检测器
本发明的固支梁T型结直接加热在线式未知频率微波相位检测器由六端口固支梁耦合器,通道选择开关,微波频率检测器,微波相位检测器,直接加热式微波功率传感器级联构成,两个固支梁之间的共面波导长度为λ/4;六端口固支梁耦合器的第一端口到第三端口、第四端口以及第一端口到第五端口、第六端口的功率耦合度分别相同,待测信号经第一端口输入,并由第二端口输出到下级处理电路,由第四端口和第六端口输出到微波相位检测器,由第三端口和第五端口输出到通道选择开关;通道选择开关的第七端口和第八端口接直接加热式微波功率传感器,通道选择
东南大学 2021-04-14
固支梁T型结直接加热在线式已知频率微波相位检测器
本发明的固支梁T型结直接加热在线式已知频率微波相位检测器由六端口固支梁耦合器,微波相位检测器和直接加热式微波功率传感器构成;六端口固支梁耦合器由共面波导,介质层,空气层和固支梁构成;共面波导在SiO2层上,固支梁的下方沉积介质层,并与空气层,固支梁共同构成耦合电容,两个固支梁之间的共面波导长度为λ/4;六端口固支梁耦合器的第一端口到第三端口和第四端口以及第一端口到第五端口、第六端口的功率耦合度相同,待测信号经六端口固支梁耦合器的第一端口输入,由第三端口和第五端口输出到直接加热式微波功率传感器,由第四
东南大学 2021-04-14
一种可同时在线活化和喷射脱汞吸附剂的方法
本发明公开了一种可同时在线活化和喷射脱汞吸附剂的方法, 其通过可同时在线活化和喷射脱汞吸附剂的装置对汞吸附剂进行在线 活化和喷射,其中,该装置包括用于喷射汞吸附剂的喷射机构、设置 在所述喷射机构侧面并与之相通的在线活化机构以及用于监测烟气中 汞浓度的汞浓度在线监测仪(11);根据监测得到的汞浓度,动态调节所 述调节风门(4);同时动态调节所述在线活化机构上的调节阀门(9);从 而对吸附剂进行在线活化,进而实现烟气脱汞。本发明的方法实现了 汞吸附剂的实时在线活化,适应汞浓度的频繁波动,并较大程度的提 高了汞吸附剂和活性组分利用效率,降低了吸附剂的用量,大大节约 了脱汞成本。
华中科技大学 2021-04-13
一种用于旋转机械在线振动监测的趋势曲线图显示方法
本发明公开了一种用于旋转机械在线振动监测的趋势曲线图显示方法,包括以下步骤:1)选择数据时间段及振动指标;2)读取数据库中的基础监测数据;3)选定绘图策略:将基础监测数据按点集密度绘图或按统计策略绘图;4)分坐标系绘制趋势曲线图。本发明通过选择数据时间段及振动指标,获取基础监测数据,选定绘图策略,并按照绘图策略处理数据,将处理所得分区域绘制趋势曲线图。本发明在趋势曲线图生成过程中,增加了数据处理,包括数据筛选和运算,使趋势曲线图更加直观、明确;再显示过程中分区域显示,便于进行数据对比。
华中科技大学 2021-04-13
两万多拟南芥公共RNA-seq文库的生物大数据在线分析平台
发布的数据库(Arabidopsis RNA-seq database, ARS)整合了来自GEO、SRA、ENA和DDBJ数据库的20,068个拟南芥RNA-seq数据,提供了“Google-style”在线查询工具。该研究对所有文库进行了基因表达水平定量和共表达网络分析,并将所有文库进行分类,总共涉及1176个突变体、1102种处理条件、12个
南方科技大学 2021-04-14
一种污水处理系统信息安全在线风险分析方法及系统
本发明公开了一种污水处理系统信息安全在线风险分析方法及系统。本发明先建立系统模型,包括资产损失分析模型、人员损失分析模型、环境损失分析模型、效益损失分析模型、安全事件模型、功能支撑模型以及贝叶斯攻击图;然后各网络节点作为从节点,监测其功能运行情况,并将监测结果发送给作为主节点的工程师工作站;最后主节点根据监测结果,利用建立的系统模型,分析系统损失。系统包括设置在工程师工作站上的主节点,设置在各网络节点上的从节点,
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 50 51 52 53 54 55 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1