高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种地源热泵制冷系统优化控制方法
小试阶段/n本发明专利涉及一种地源热泵制冷系统节能优化方法,属于建筑空调系统的节能优化控制领域。本发明将几种模型进行优化组合,即使一个效果不佳的预测模型,只要它含有系统的对立信息,当其与一个和几个较好的预测模型进行联合预测后,仍然能够改善系统的预测特性,为提高最终的预测精度,控制系统运用组合预测方法综合利用各种方法所提供的信息,避免单一预测模型丢失有用的信息,减少随机性,提高预测精度。本发明的最优值在确保满足末端负荷需求的前提下,使系统的能耗最小。当最优设定值确定后,控制系统中央制冷系统运行在最优设
武汉科技大学 2021-01-12
变地隙自走式高效施药装置的研究与开发
重点开展篱架型作物变地隙底盘和施药设备,高效、低量、低污染施药技术,关键工作部件、篱架自适应控制技术、流失与飘失雾滴的回收利用技术等核心技术的创新研究,提高农药有效利用率和作业效率。 (1) 根据中国国情解决适应篱架型作物的变地隙底盘; (2) 适合宽窄行篱架型作物低量、低污染施药系统; (3) 篱架型作物不同生长阶段优化匹配专家决策系统; (4) 雾滴回收装置的宽度能够根据篱架作物在不同长度的位置上,通过隧道上安装的红外探头感应,自动调节隧道宽度,既达到回收雾滴的目的,又不伤害作物;同时能利用红外
扬州大学 2021-04-14
一种双地网接地电阻的测量方法
本新技术成果(发明专利:201010238708.2)针对高土壤电阻率地区采用外引地网来降低接地电阻时因主网和辅网相隔离较远的难以测量的现实问题,基于原创性且国际先进水平的理论成果,自主研发一种双地网接地系统接地电阻的测量方法。该方法计算简便,物理意义明显,克服工程应用中测量双地网布线麻烦的难点。目前,该测量方法已经得到了广泛的验证,显示出明显的效果。 该测量方法具有国际先进水平,可控性强、准确度高,填补了可信性自动验证的空白,有着广阔的应用领域。
西南交通大学 2016-06-27
卡优地垫 抗防疲劳地脚垫 20mm厚
产品详细介绍可定制多种规格尺寸厚度一、产品介绍:产品名称:防静电抗疲劳地垫产品性能:采用工艺,精心制作而成,以满足现代人工作舒适的要求。   1、防静电或不防静电可选。   2、柔韧、反弹力强、清洁方便、易于移动。   3、表面为柳叶纹防滑设计,使用方便。   4、可耐酸碱溶剂,弱酸弱碱。二、产品规格:厚度:20mm 宽度和长度可选 三层合一定制色彩:黑色黄边棉层: 耐撕耐压回弹快执行标准GB/T 17794-2008三、静电值:   表面电阻测试仪检测为10的9次方欧姆。底部为10的3-5次方欧姆。四、保质期:16个月。正常8个小时连续作业踩踏。适用于需长时间站立的防静电工作场所,起到有效缓冲脚部压力、缓解疲劳的作用。五、注意事项: 避免使用易挥发性液体在表面清洗,如酒精、苯类、香蕉水等溶剂。⒈ 产品表面严禁接触强酸碱性溶剂或易挥发性溶剂,此举可能导致产品表面变色,褪色和电阻值衰退。不能用高温铁器和锋利物器在表面接触和划伤。因为产品中间为棉层,连续12-24小时作业会有所下陷或有所损耗。地址:深圳市宝安西乡黄麻布第二工业区第5栋四楼电话:0755-29165652传真:0755-27490894邮箱:957182835@qq.com  
深圳市龙之净科技有限公司 2021-08-23
SC-430地热水污染(颗粒)度测定仪
仪器概述   本仪器是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场油液污染度等级快速检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。内置微水传感器和温度传感器,在进行污染度检测的同时,可对水含量和油液温度一并检测。可广泛应用于地下水、化工、交通港口、钢铁冶金、汽车制造等领域。 技术参数 1、光源:半导体激光器 2、粒径范围:0.8-600um(根据不同传感器而定) 3、检测通道:任意设置粒径尺寸 4、取样体积:0.2-1000ml 5、取样精度:优于±1% 6、取样速度:5-80mL/min 7、清洗速度:5-80mL/min 8、清洗体积:可在0ml~90ml间设置 9、计数准确性:误差小于±5% 10、分辨率:≤10% 11、重复性:RSD<2%12、极限重合误差:12000-40000粒/mL13、离线检测粘度:≤100cSt(选配气压瓶式取样器最高粘度可达400cSt)14、压力范围:低压0-0.6MPa、高压可达40MPa(选配减压阀)15、在线检测间隔时间:任意设置16、检测样品温度:0℃~80℃17、工作温度:-20℃~60℃18、储存温度:-30℃~80℃19、电源:AC100-240V,50/60Hz20、电池容量:5200mAh21、电池运行时间:6-8小时22、外形尺寸:410×320×165mm23、重量:8.5kg 性能特点 1、国际液压标准委员会指定的光阻(遮光)法测试原理 2、高精度激光传感器,测试范围宽,性能稳定,噪声低,分辨率高3、高精度双向柱塞计量泵取样方式,进样速度可调,取样体积精度高4、管路采用316L及PTFE材料,耐腐蚀,满足各类有机溶剂及油品的检测5、用于实验室或现场测量,可选配减压装置用于在线高压测量6、可外接压力舱形成正/负压,实现高粘度样品的检测和样品负压脱气7、可使用标准取样瓶、取样杯等多种取样容器,或直接接入液压系统在线检测,满足不同行业的检测要求8、内置多重校准曲线,兼容所有国内外常用标准进行校准9、内置GJB-420A、GJB-420B、NAS1638、ISO4406、SAE4059E和ГOCT17216等多个常用标准,一次测试可给出所有内置标准下的数据结果,支持自定义标准测试,并可根据客户需求设置所需标准10、可设置1000个粒径通道,便于进行颗粒度分析11、内置数据分析系统,可根据标准自动判定样品等级,具有数据自动处理、打印功能12、彩色触摸屏操作,中英文输入,可自由切换语言界面,具有预设、输入、修改、存储功能,操作方便快捷13、具有RS232接口,可连接电脑或实验室平台进行数据处理,也可使用USB进行数据存储14、内置锂电池,适合野外作业,无需外接电源即可使用15、嵌入式设计,高强度外壳,便于携带,适合各类工程机械 网址链接 http://www.csscyq.com/proshow.asp?id=837
长沙思辰仪器科技有限公司 2021-12-23
一种电力线通信系统的噪声预测方法
成果描述:本发明申请要解决的问题是,改进预测技术,提高预测准确度。本专利利用高阶马尔科夫模型的原理提出HM-gMTD模型的一种改进,即高阶HM-gMTD模型,并通过EM算法给出相应的参数估计方法和相应的计算方法,并能够快速进行参数估计,以提高模型预测的准确度。市场前景分析:预测模型的发展在人类的经济生活方面发挥着重要的作用,尤其是马尔科夫模型,几乎在各个领域都有着非常广泛的应用。本发明着重混合转移分布模型与高阶隐马尔科夫模型的巧妙结合,构造出高阶HM-gMTD模型,然后运用EM算法,对新模型实现了主要参数的求解。最后为了衡量一个模型的好坏和对不同的模型进行比较,我们选择准则函数。模型比较的最佳准则函数,既考虑到模型对原始数据的拟合程度,又兼顾模型中所包含的待定参数的个数,并且对二者做出合理的权衡。与同类成果相比的优势分析:本发明主要是针对HM-gMTD模型的进一步改进,提出一个高阶HM-gMTD模型,使其在降低计算的复杂度的同时,提高预测的准确性。
电子科技大学 2021-04-10
一种风电集群轨迹预测与分层控制方法
本发明涉及一种风电集群轨迹预测与分层控制方法,包括:根据风电集群及风电场内的拓扑结构,基于空间相关性和NWP数据进行超短期风电功率预测;根据调度中心下发的调度值,将控制过程在空间上分为集群优化调度层、场群协调分类层和单场自动执行层,将风电功率预测值从时间上逐层细化;在场群协调分类层,基于风电功率预测值对风电场进行分类,分为上爬坡群、下爬坡群、平稳群和振荡群;在单场自动执行层,基于AGC机组下旋转备用裕度和风电送出断面裕度判断风电可增发空间,增发上爬坡群风电场出力或降低下爬坡群风电场出力;基于风电场运行与监测系统,根据监测到的风电场实际值,计算并反馈风电功率误差,修正风电集群和风电场预测值,使优化过程更加精确。
中国农业大学 2021-04-11
基于深度时空分析的综合能源数据挖掘与预测技术
本成果针对城市水电气热等综合能源数据来源广泛,结构复杂,且与用户、时间、空间信息关系紧密的特点,构建了高性能综合能源数据分析平台,提出了细粒度的能源数据分析理论框架及方法,并将其应用于智慧城市建设。
南开大学 2021-02-01
槽式光热发电多模型预测函数控制及其优化
针对太阳能集热系统扰动多、大滞后和大惯性等控制难点,建立了适合控制器设计的简化分段非线性模型,并设计了基于预测函数控制策略的集热系统出口导热油温度控制系统。该预测函数控制策略在调节速度、超调量以及稳定性方面的控制效果均明显优于传统PID控制策略;与未简化的多模型预测控制相比,简化后的多模型预测函数控制的最大动态偏差增大了13%,但计算量大大降低,控制器的实时性也得到增强。
南京工程学院 2021-05-21
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
首页 上一页 1 2
  • ...
  • 14 15 16
  • ...
  • 31 32 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1