高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
用于磁共振非造影剂的目标血管成像方法
本发明涉及一种用于磁共振非造影剂的目标血管成像方法,核磁共振发射通道为至少2个并行发射通道,根据目标血管的空间区域确定标记区域;获取并行发射时所述标记区域需要的最优发射通道参数,作为核磁共振发射通道的第一参数组合;获取并行发射时所述成像区域需要的最优发射通道参数,作为核磁共振发射通道的第二参数组合;根据预设标记参数和所述第一参数组合,反转所述标记区域内的纵向磁化矢量;等待所述预设恢复时长,根据所述第二参数组合,执行磁共振序列的成像序列,并采集信号;对所述成像序列采集的信号进行重建。能够使得射频发射场的均匀度达到最佳,从而达到成像区域目标血管最优显示或者非目标血管最优压制的目的。
复旦大学 2021-01-12
用于票证的激光三代防伪材料和识别仪器
成果与项目的背景及主要用途: 防伪,是企业在目前社会诚信缺失、假冒伪劣商品扰乱企业正常经营和损害企业、消费者利益的情况下,为保护企业市场、保护广大消费者合法权益而采取的一种防范性技术措施。企业在充分利用防伪技术来打击假冒伪劣、整顿和规范市场的同时,更是品牌企业对外提升企业及其产品形象、展示企业对消费者、对社会负责任的一种必须手段。 同时,企业应以防伪为契机,将有效的防伪措施作为企业的一种战略投资,并有计划地制定并逐步实现防伪工作目标,并将防伪贯穿于产品生产、市场营销、企业管理的全过程,将防伪作为企业维权、打假、增效、塑造品牌的重要手段。 技术原理与工艺流程简介: 将高科技应用于防伪是国际上普遍采用的方法之一,基于频率转换技术的特殊光学防伪措施就极具代表性,比如:紫外油墨防伪、激光防伪等。特殊光学防伪是利用发光器(如:激光器、特定波长光源等)激发涂覆在纸面上的特殊材料,发出特定波长的光,再利用接收系统对此光进行接收,从接收信号的有、无或编码顺序来识别真假。可以看出,特殊光学防伪涉及到几个重要的元器件,即特定波长半导体激光光源、窄带光学滤波器、光电探测器和专用处理芯片及配套的机具结构。在防伪鉴别系统的研制过程中,对这几种器件提出了很高的要求,即体积小、强度高、温度特性好、对特定波长接收敏感、自动漂移补偿等,以保证防伪机具的稳定性和可靠性。我们采用的原理是频率变换光油墨,然后用某个特定波长的激光激发,最后用 PD 探测,以此组成防伪识别仪器。所谓光学频率转换理论是采用光谱发射器件以特定的波长激发被测物的表面产生另一个特定波长的光学信号,这个信号经过光滤波器件、专用光电接收器件后由专用信号处理电路进行识别,并使整个系统始终处于自动补偿状态。光子混合集成器件就是使新型光谱发射器件、专用光电接收器件、光滤波器件在一起有效地组合,可采用混合集成或光电集成来制成这种光子集成芯片调试、封装,再加上专用弱光信号处理及补偿芯片等元件实现优化组合和匹配,构成微型化系统模块。其原理图如下 频率变换原理:当荧光物质被激光照射时,其电子就会吸收光子被激发而跃迁至激发态,当他向低能态跃迁时,就产生荧光。从此发光过程来看,由于发光主要是电子跃迁引起的,并且经研究表明此种频率变换效应需要有晶体的机制才能发生,所以,简单的改变油墨涂料颜色等不会对它的频率变换有所影响。 应用前景分析及效益预测:防伪度高,识别性强,具有客观的市场前景。 应用领域: 包装防伪行业 合作方式及条件:根据具体情况面议
天津大学 2021-04-11
一种用于紧凑式热带生产的热轧调度方法
本发明公开了一种用于紧凑式热带生产的热轧调度方法,以最小化无委材数量、最小化同一轧制单元内相邻两块板坯间最大厚度改变量、板坯厚度的改变时间为目标,建立包括无委材优化模型和板坯厚度优化模型的热轧生产调度模型;根据实际热轧生产过程中的工艺约束确定上述无委材优化模型和板坯厚度优化模型的约束条件;采用改进的启发式算法对无委材优化模型进行求解,获得最优轧制单元的数量和无委材的数量;采用基于分解的多目标进化算法对板坯厚度优化模型进行求解,获得最优相邻板坯之间厚度的改变值和最优的厚度改变时间;本发明所提供的方法获得的调度计划优与人工编制生产计划相比,可有效地减少板坯规格跳跃费用和换辊费用,降低生产成本。
华中科技大学 2021-04-14
一种用于船体分段外板的自动划线方法
本发明公开了一种用于船体分段外板的自动划线方法,包括:对待划线船体分段外板和固定设备执行数字化静态扫描测量;为船舶制造车间建立三轴空间定位坐标系,并获得划线机器人的实时三维坐标信息;利用虚拟装配技术获得船体分段外板的设计模型,并将该设计模型与实体数字化模型执行对齐处理;结合对齐处理后形成的映射关系,获得划线机器人与待划线目标在设计模型中的相互位置,相应生成运动信号并驱动划线机器人执行实际划线操作。通过本发明,能够顺利实现虚拟装配过程对实际建造过程之间的指导,同时实现建造装配信息向虚拟装配的反馈,并具备划线精度和自动化程度高、快速高效、便于操控和适用性强等特点。
华中科技大学 2021-04-14
改造类脂 A 结构用于安全宿主菌构建及疫苗佐剂生产
类脂 A 是脂多糖分子的疏水基团,大量存在于革兰氏阴性细菌的外膜外层,能通过结合免疫细胞表面的受体 TLR4 来刺激人体免疫系统[50, 51],因而也是一种很好的免疫系统激活因子。美国 Corexa 公司已经开发出了可用于乙肝病毒疫苗和过敏治疗的疫苗佐剂 MPL。研究表明 MPL 刺激的免疫细胞中 IL-1β 的分泌量 显著降低,使得 MPL 的毒性降低但免疫活性还在。MPL 目前是通过从沙门氏菌的 突变株 Salmonella minnesota RC595 中提取类脂 A,然后用化学方法去除其多余的附加基团而得到。本项目拟利用这些类脂 A 修饰酶,根据类脂 A 分子的合成机理,通过基因工程技术将大肠杆菌中类脂 A 的结构改造成为 MPL,构建能合成 MPL 的大肠杆菌。这种新型的能合成 MPL 的大肠杆菌不仅可以作为宿主菌安全使用于食品和药物的发酵工业生产中,而且可以作为实验室研究中更安全的基因表达载体,最重要的是它可以直接用来生产类脂 A 疫苗佐剂 MPL。
江南大学 2021-04-11
一种OAM模分复用系统的非线性均衡器
OAM(轨道角动量)模分复用技术是一种新兴的通信复用方式,它通过在光信号中引入轨道角动量这一新的维度,实现了光信号的多模式传输,从而显著提高了光纤通信系统的传输容量。然而,OAM模分复用系统在实际应用中面临着模式间串扰和非线性效应导致的信号失真问题,这些问题限制了系统的性能和传输距离。 针对这一挑战,提出了一种高效的非线性均衡器,该均衡器采用先进的算法和电路设计,能够有效地抑制OAM模分复用系统中的非线性失真和模式间串扰,从而提高系统的传输性能和稳定性。该均衡器不仅具有高度的灵活性和适应性,能够根据不同的传输需求和系统配置进行优化调整,而且其设计紧凑、功耗低,非常适合应用于现代光纤通信系统。 本成果创新点主要体现在以下几个方面:首先,通过引入先进的非线性均衡算法,实现了对OAM模分复用系统中非线性失真的有效抑制;其次,利用优化的电路设计和信号处理技术,提高了均衡器的性能和稳定性;最后,该技术能够广泛应用于多种光纤通信系统,具有广阔的市场前景和应用价值。 图1. 均衡器计算过程
北京理工大学 2025-02-10
成纤维细胞生长因子的临床转化及相关新药研究进展
成纤维细胞生长因子(FGF)调节人体发育的过程,以旁分泌或内分泌的方式调控血管形成,损伤修复,胚胎发育和代谢调控等一系列重要生理病理过程.FGF用于烧伤创面及慢性溃疡创面治疗已经有新药上市应用.最近发现的以内分泌方式调控胆汁酸,葡萄糖和磷酸盐平衡的FGF19亚家族将拓展FGF家族的新功能.综述FGF在创伤修复,糖尿病,低磷血症等疾病治疗中的应用,以及FGF受体抑制剂作为抗肿瘤药物的研究进展,探讨FGF在中国的基础与应用研究进展.
吉林农业大学 2021-05-04
一个新的细胞因子在抑制炎症和抑制肥胖的开发应用
项目简介 该成果在国际上首次发现并研究了一种新的人类细胞因子重组蛋白,可以用于治疗炎症和肥胖,实验室动物实验结果显示能够明显抑制急、慢性炎症;抑制肥胖、抑制脂肪肝形成、降低血糖并提高胰岛素的敏感性,动物实验结果明确。重组真核蛋白与重组原核蛋白(大肠杆菌表达)具有同样的生物学活性。这个基因的转基因老鼠未见任何异常(类似长毒实验)。希望寻求感兴趣的企业,进一步开发该项目成为我国真正的I类新的生物药。应用范围 该成果主要用于治疗溃疡性结肠炎、结肠癌;抑制肥胖和脂肪肝;抑制血糖升高。具有良好的潜在应用前景。 项目阶段 该项目目前主要进行了实验室的研究,包括细胞水平和动物实验以及作用机制研究。知识产权 已经申请3项发明专利,其中2项已授权,具有自主知识产权。合作方式 共同开发、技术转让。
北京大学 2021-04-11
一种研究活细胞内蛋白质互作的新方法
蛋白质之间的相互作用对生命活动至关重要。尽管已有不少体内研究蛋白互作的方法,但由于许多蛋白互作是高度动态的,因此用传统的方法难以捕获。本研究基于“招募”和“聚集”的原理,即将“诱饵”蛋白A锚定在线粒体的外膜上,如B蛋白能与A蛋白互作,则将被“捕获”到线粒体外膜,发生富集;如C蛋白不与A蛋互作,则不会发生定位变化(图1)。文章首先用线粒体锚定(Mito-docking)的方法有效验证了G蛋白亚基γ2和β1间的互作,并进一步运用该方法研究了核转运受体(importinαisoforms)与货物蛋白(经典的核定位信号cNLS)之间的互作,揭示了核转运受体-货物蛋白的识别特异性
武汉大学 2021-04-10
可注射干细胞 3D 微组织治疗实现微创高效再生医学
以组织工程和干细胞治疗为代表的再生医学是现代医学最具发展潜力的领域,有望成为继药物和器械治疗之后下一个医疗健康行业的支柱产业。再生医学已在临床成功地用于皮肤再生,关节软骨重建,肌腱、脊髓损伤修复,免疫系统功能重建等,并在治疗疑难病症(如遗传性疾病和心血管类疾病)和各类器官组织(如神经、肝脏、心脏、胰腺等)修复和再生的动物模型和临床试验中显示出良好效果。3D 微组织疗法目前在科研领域内,也在大动物(犬)椎间盘蜕变、小动物(鼠)皮肤损伤及小动物(鼠)肝衰竭等模型中得到有力验证。这种可注射3D 微组织平台技术可辅助各种类型的细胞治疗和组织 再生,有望像药物传递对于药物治疗一样在细胞治疗领域产生广泛而重大的影响。其潜在市场主要是各大 医院和医疗机构,将成为未来治疗重大疑难疾病的利器。
清华大学 2021-04-11
首页 上一页 1 2
  • ...
  • 84 85 86
  • ...
  • 664 665 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1