高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
智慧教育中混合式学习环境下学习过程数据化关键技术
(一)项目背景 当前,智慧教育具有智能导学、精准推荐、定制辅导、精细评价等特点,已成为国际国内教育信息化发展的趋势。智慧教育的研究主要聚焦于智慧学习环境建设的研究、智能技术支持下的智慧教学研究和机器学习技术支持下的个性化学习研究。智慧教育的出现极大地促进了当前教育中学习空间的重构。在“学习空间”之前,人们通常使用“教学空间”来指代这种场所,将有教学活动的场所均称作教学空间。随着人们对学习过程的理解变化、智慧教育的快速发展以及人们对非正式学习的重视,学习空间逐渐由单一的物理教学空间向包含物理空间、网络空间、移动空间的多元学习空间转变。多元学习空间的提出虽然更多地体现出了“以学生为中心”的倾向,但如何具体衡量多元学习空间对学生学习效果的影响是评价多元学习空间的重要步骤。同时,在多元学习空间具体构建时,面对空间中来源不同、结构多样、数量庞大的多模数据如何进行处理存储、并在保证数据有效性的前提下对教育数据进行隐私保护是多元学习空间需要解决的另一个难点。 (二)项目简介 本项目主要目标是针对信息技术支撑下学习空间多元化、场景复杂、需求多样化,学习者及学习行为呈现出新的特点和规律,研究多元学习空间中学习行为数据化关键技术,构建“云-边缘-物联网”架构的多模态数据存储与处理平台,实现混合式学习环境下学习行为智能感知和数据化,优化学习行为模型,基于实际应用与不同学习目标函数及内容,建立可重复、可预测、可验证的对比数据集,为数据驱动的智慧教育生态构建和教育应用提供核心技术与数据支撑。 (三)关键技术 我们面向智慧教育中准确认知学生的学习状态和行为的大数据需求提出研究方案。本项目实施方案涉及教育学、物联网、云计算、人工智能、隐私保护等多个领域,主要技术路线如图所示: 图 1 技术路线图 其中,项目包括的关键技术主要有以下三点: 1.基于物联网的多模态数据实时智能感知和多时间域数据采集技术 该技术针对学习状态的数据化、特征参数量化问题,设计能够采集多 重学习空间下的智能数据感知物联网系统。主要技术难点在于抽样频率与 识别准确度的平衡、人机交互的变化规律等全新科学问题。 2.学习状态多模态数据解析和智能处理技术 利用智能感知物联网采集实时性的原始学习状态数据,包括面部表情、 脑电信号、头部姿态、交互行为等原始数据,这些数据具有数据量大、模 态多、冗余度高等特点,需要通过智能化的预处理方法转换成可以量化的 状态数据。 3.多层次数据差分隐私保护技术 学习行为数据是学习者被动采集的多方面行为数据,受到日益增长的 具有争议性的数据伦理的制约。该项技术通过数据隐私保护机制实现数据 多层次化的差分隐私安全算法;在保证学习者最大数据隐私性的前提下, 研究满足学习行为分析所需要的数据颗粒度。
西安电子科技大学 2023-07-20
一种多用户大规模 MIMO 混合预编码能效优化方法
本发明公开了一种多用户大规模 MIMO 混合预编码能效优化方法,首先松弛约束条件,迭代求得基站能效的理论上限。然后以逼近理论上限为目标设计基带预编码矩阵和射频预编码矩阵。具体做法是,在基带,将基带预编码的求解转化为可以用内点法求解的标准的半正定松弛问题,在射频,将射频预编码的求解转化为可以用相位旋转求解的向量逼近问题。使用交替最小化的方法,迭代逼近理论上限。
华中科技大学 2021-04-11
一种基于自然共享最近邻居搜索的发现簇和离群点的算法
本发明属于数据挖掘领域,尤其是涉及一种基于自然共享最近邻居搜索的发现簇和离群点的算法。其特征在于,首先对数据集进行自然最近邻居搜索,当发现数据集中没有共享最近邻居的点的数量不再变化时搜索结束,得到搜索最近邻个数n;根据提出的自然共享邻居定义,计算每个对象在n近邻下得到的自然共享最近邻居关系;然后基于共享最近邻的自然邻居搜索算法确定了每个对象的自然共享最近邻域关系,根据该自然共享最近邻居关系,对数据进行聚类和离群点判别。本发明的算法中提出一种新的共享最近邻居关系和自然邻居搜索终止条件,解决了现有算法因为自然邻居关系定义不够严密及搜索条件不够科学而引起的聚类效果不好和离群点检测精度不高的问题。
中国农业大学 2021-04-11
基于大行程柔性铰链的6自由度并联机器人系统的研究
随着机器人技术的逐步完善,适于特殊作业的机器人种类也日益增多,其应用领域不断拓展到微电子制造,MEMS封装与组装,高精密机械加工与装配,生物芯片制备,大范围高速扫描检测装备等行业.随之而来的,各行业对机器人的性能指标提出了越来越高的要求,追求机器人的高定位精度,高重复精度,高分辨力,同时还要求其工作范围大,质量轻,能耗低等,从而对机器人结构的设计提出了更高的要求.在这样的前提之下,为满足人类向微小世界探寻的需要,作为机器人技术发展的一个重要分支,微操作机器人成为机器人学中十分活跃的研究领域. 本文结合国家"863"计划项目"6自由度纳米级宏微操作机器人的研究(项目编号2002AA422260)"和"原型装置靶瞄准定位系统工程预先研究项目(项目编号863-804-5)",共搭建了3套实验系统,其中采用了单一驱动以及双重驱动两条技术方案.在广泛的分析了目前已有的柔性精密定位系统,并联精密定位系统和宏/微双重驱动系统的基础之上,针对目前大范围运动定位与高精度定位的应用实际需要,提出了大行程柔性铰链的概念设计,并以此构建六支链大行程柔性并联结构定位系统,为满足超高精度的定位需要,在并联支链中集成了压电陶瓷驱动,构成了宏/微双重驱动并联结构系统,充分体现了驱动,结构,检测一体化的设计思想. 在结构单元的设计方面,针对当前柔性铰链运动范围小等问题,在通用的球副柔性铰链的基础之上,提出了大行程柔性铰链的概念设计;在柔性并联结构的设计方面,提出了在通用的并联结构系统中,采用大行程柔性铰链代替传统运动副的设想,建立基于大行程柔性铰链的并联结构系统. 在大行程柔性并联结构的运动学建模方面,利用材料力学的基本原理和小变形假设,推导了大行程柔性铰链的数学模型,并给出了在全局坐标系下的显式表达;在此基础之上,通过刚度组集的办法建立了大行程柔性铰链并联结构柔性支链的运动表达式,通过联立运动位移协调方程和力约束协调方程,建立了并联结构的位置解模型. 由于并联结构系统中的各部件,特别是柔性铰链结构在自身变形提供整体结构的运动输出的同时,还经历了大范围的刚体运动,导致大行程柔性并联结构的位置解模型成为典型的几何非线性问题.鉴于此,本文首先推导了空间柔性结构的几何非线性的刚度递推模型,并利用牛顿-莱弗森方法对该模型进行了求解.由于几何非线性模型的迭代求解方式,导致该模型的实时性很差,不易移植至控制系统进行实时控制求解,故在大量的试验尝试的基础之上,选择了BP神经网络方法,建立了3层六输入-六输出的位置解神经网络结构,从而在方便了实时控制编程的同时,还大大提高了系统的位置解的求解速度. 由于柔性并联结构的位置解模型中不仅仅包括结构中的位置信息,还提供了结构中相关的力信息以及刚度信息,本文在上述位置解模型的基础之上,给出了该类系统的刚度模型,并建立了并联结构中的结构参数和尺度参数对系统刚度的影响图谱,对这类系统的结构综合以及优化设计提供了有力的工具. 在大行程柔性并联结构的动力学建模方面,采用了欧拉梁理论和有限元方法,由拉格朗日方程建立了基于实际位移的大行程柔性铰链并联机器人各支链的动力学模型,并通过位移协调方程和动力协调方程,最终得到并联系统的动力学模型.综合采用了纽马克方法和牛顿-莱弗森方法解决了系统动力学求解问题,并通过一个算例进行了基于逆动力学的求解仿真. 在大行程柔性并联结构的样机实验方面,我们提出了采用大行程柔性铰链作为被动关节的6-PSS并联机器人系统,该系统采用压电马达作为驱动器,精密光栅尺作为位置反馈元件,其可在立方厘米级的工作空间内实现微米级精度的运动;在此基础之上,我们在并联机器人的支杆中嵌入压电陶瓷,在压电马达的宏运动结束之后,压电陶瓷可以驱动并联机器人进一步的微调,从而得到一个6-PSS和6-SPS结合宏微双重驱动并联机器人系统,其中,微动系统可在微米级运动空间内实现纳米级的运动精度.基于大行程柔性铰链的宏微双重驱动并联机器人系统,可以同时满足大工作空间和高精度的工程需要.此外,我们将大行程柔性铰链并联机器人系统,成功的应用到激光瞄准靶支撑装置中,其厘米级的运动范围和纳米级的运动分辨力,使其在神光III系统中发挥了十分重要的作用.
哈尔滨工业大学 2021-05-04
基于离散元的单向增强复合材料代表性体元的生成方法
本发明公开了一种基于离散元的单向增强复合材料代表性体元的生成方法,属于复合材料仿真以及数值模拟技术领域。该方法包括以下步骤:给定RVE的几何尺寸、纤维体积分数和纤维半径,其中纤维横截面为圆形,生成过程中将纤维视为基本的离散元,RVE剩余部分视为基体,即可生成满足参数的代表性体元;生成纤维的过程是随机的,生成的纤维在空间上是周期性分布的,即纤维在代表性体元的上边界和下边界、左边界和右边界的分布规律完全一致,所生成的代表性体元不依赖纤维的预先分布和排列,能够得到纤维体积分数很大的代表性体元。
东南大学 2021-04-11
基于眼动技术的视频终端相关性眼病的防控眼动仪
我方与合作方联合开发了一套拥有独立知识产权的眼动识别软件以及与配合使用的外接眼动仪智能硬件。 该套设备可以自动跟踪并分析患者眼睑的肌肉动作,精确抓取不完全瞬目、眨眼过快、眨眼过慢、用眼过度等用眼习惯数据,以自主研发硬件进行智能提示,帮助视频终端引起的干眼症及眼疲劳症患者制定正确用眼习惯计划,有效辅助治疗视频终端相关性干眼及视疲劳。
天津医科大学 2021-02-01
基于FPGA的TFT-LCD液晶屏的差分数据格式转换系统
低压差分LVDS(Low-Voltage Differential Signaling)传输技术因具有低功耗、低误码率、低串扰辐射等特点,被广泛地应用在高带宽和高速I/O接口通信系统中。目前,在各种类型的TFT-LCD(thin film transistor-liquid crystal display)薄膜晶体管液晶显示屏的图像数据接口通信中都采用LVDS传输技术。但是不同厂家、不同尺寸、不同分辨率的TFT-LCD屏对应传输信号的差分格式及协议不同,影响了屏的兼容性,为生产视频处理电路主板的厂家测试带来了极大的不方便,实际生产中急需要把种类繁多的差分数据协议转换成具有多媒体标准协议的TMDS数据格式。本项目将对应不同尺寸、不同分辨率、不同传码率的TFT-LCD液晶显示屏的差分数据格式及传输协议的图像信号转换为多媒体标准协议的TMDS格式信号,采用片上系统FPGA器件实现, 提高显示屏的兼容性,方便生产显示器的厂家测试电路主板,提高了生产效率。
青岛大学 2021-05-10
基于AI大数据深度学习的胃肠道肿瘤辅助病理诊断系统的研发
针对植物油炼制过程产生的脱臭馏出物化合物因其组分结构相似和物化性质相近导致现有主要生产技 病理是肿瘤诊断的金标准。病理诊断的准确严重依赖病理科医生的经验。智能化数字病理是数字化病 术中分离选择性差等关键问题,提出了以离子液体类溶剂强化的维生素E提取技术,重点发展植物脱臭馏 理与人工智能(AI)的结合,其推广不但能减轻病理医生的工作负担,还能提高医疗欠发达地区的诊断水 出物中维生素E提取的连续萃取分离工艺。基于相平衡实验数据拟合热力学模型参数,构建离子液体类溶 平,是病理学发展的未来趋势。
中山大学 2021-04-10
一种基于均值漂移的不同精度三维点云数据的融合方法
本发明公开了一种基于均值漂移的不同精度下的三维点云数据 的融合方法,针对两组精度等级不同的三维点云数据,利用高精度点 云建立低精度点云的误差分布,进而对低精度点云进行均值漂移,消 除低精度点云的漂移误差,从而实现两组数据信息的融合,该方法包 括:S1:建立低精度点云的拓扑结构信息,包括每个样点的邻域点集 和单位法矢;S2:利用高精度点云对低精度点云进行密度聚类,根据 聚类结果确定低精度点云每个样点的漂移误差;S3:利用低精度点云 的拓扑结构信息和所述漂移误差确定低精度点云各样点的漂移矢量, 根据该漂移矢量对低精度点云的各样点进行漂移,实现融合。本发明 的方法在消除低精度点云漂移误差的同时,可实现小幅度噪声的光顺。 
华中科技大学 2021-04-11
基于眼动技术的视频终端相关性眼病的防控眼动仪
我方与合作方联合开发了一套拥有独立知识产权的眼动识别软件以及与配合使用的外接眼动仪智能硬件。 该套设备可以自动跟踪并分析患者眼睑的肌肉动作,精确抓取不完全瞬目、眨眼过快、眨眼过慢、用眼过度等用眼习惯数据,以自主研发硬件进行智能提示,帮助视频终端引起的干眼症及眼疲劳症患者制定正确用眼习惯计划,有效辅助治疗视频终端相关性干眼及视疲劳。应用范围:全国人口中 60%-80%的人,都有不同程度的干眼症。2015 年即有数据公布, 全国 2000 万干眼患者。并且,每年还在以平均每年 40%左右的速度增长。2016 年仅天津医科大学眼科医院一家机构,共接诊干眼症患者 4 万余人。现阶段缺乏有效的干眼病因诊断及治疗,故急需快速诊疗,操作简单的诊疗仪器,引导患者进行工作环境下或家庭康复训练及理疗,减少干眼发病率及就诊率。本产品是基于以上需求开发的,临床应用前景广阔。效益分析:本成果对应领域为所有电子视频终端用户,尤其是已经引起干眼的用户。 目前该治疗领域的治疗方式及局限性如下: 1、滴眼液:辅助缓解干眼。不能从病因上根除治疗。 2、专业睑板腺按摩:须在院治疗,治疗环境受限。不方便患者连续治疗。 3、国外干眼症治疗仪:体积大、平均售价 12 万美金/台。单次治疗费用2000 元。限制了仪器的普及使用。 本项目的创新优势: 1、研究表明 90%以上的由于视频终端所引起的干眼症可以通过恢复正确的用眼习惯、眨眼频次、完全闭合性眨眼动作,从消除病因上根治干眼症的。本成果依据以上研究结果,引导视频终端干眼患者在家进行眼部康复训练及物理理疗。 2、本产品售价低廉,可采用出售或租售给患者的模式,短期辅助诊疗,长期预防治疗。 3、本产品体积较小,且随意摆放至视线内任意台面,即可开机使用。治疗场景不受约束,可随时随地进行眼部训练及辅助治疗。 4、本产品不直接接触人体,治疗过程无痛苦。
天津医科大学 2021-04-10
首页 上一页 1 2
  • ...
  • 160 161 162
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1