高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
水体中主要病原微生物特异分子标识库的建立和快速 检测技术
水是生命得以存在的必要条件,它使我们人类得以繁衍生息,人类的生活、生产、娱乐都离不开水。它同时也是许多病原微生物滋生、传播的场所和载体,这些病原微生物一旦进入人体则将可能使人患病、甚至导致死亡,严重威胁着人类健康。随着社会的发展和生活水平的提高,人们越来越关心自身的健康问题,而各种水体(包括生活饮用水,江河湖泊,游泳场馆等)的安全问题也日益成为人们关注的热点。 因此,为了保护人们的身体健康,对各种水体尤其是饮用水中病原微生物的检测是十分必要和亟需的。本项目旨在建立水体中主要病原微生物特异分子标识库,并以此为基础建立快速检测技术,以实现对包括生活饮用水在内的各种水体中主要病原微生物(致病性细菌和原生动物等)的迅速、准确的检测,为人们的用水安全和水质状况的评估提供依据。 应用价值: 根据我国现行饮用水水质标准及 WHO、USEPA 和欧盟的相关规定,确定芯片的检测范围为 12 种细菌、1 种钩端螺旋体和 2 种原生虫:金黄色葡萄球菌,嗜肺军团菌,粪肠球菌,屎肠球菌,肺炎克雷伯氏菌,铜绿假单胞菌,亲水气单胞,大肠杆菌/志贺氏菌,小肠结肠炎耶尔森氏菌,霍乱弧菌,副溶血弧菌,沙门氏菌,钩端螺旋体,贾第鞭毛虫,隐孢子虫。
南开大学 2021-04-13
理学院大数据研究团队在人工智能与大数据处理领域发表系列高水平研究成果
我校理学院大数据研究团队在人工智能与大数据处理技术研究方面取得系列进展,研究成果分别发表在IEEE Transactions on Neural Networks and Learning Systems、IEEE Transactions on Cybernetics和Information Sciences三大人工智能顶级期刊。神经网络是人工智能领域中目前最为火热的研究方向——深度学习的架构基础。虽然深度学习在近几年发展迅速,但是关于如何设计最优神经网络架构的问题仍处于探索阶段。该团队分别针对人工智能中神经网络结构复杂、高维大规模数据存在无效和冗余特征、难以获取长时序信息等问题与缺陷,设计出了一系列网络结构优化、大数据特征选择和时序循环神经网络模型,有效改善了上述不足,提高了人工智能模型的学习性能。 题目为《带Group Lasso惩罚与控制冗余的神经网络特征选择》(Feature Selection using a Neural Network With Group Lasso Regularization and Controlled Redundancy)的研究论文发表在人工智能领域权威国际期刊IEEE Transactions on Neural Networks and Learning Systems。王健副教授和博士生张华清为该论文共同第一作者, 我校荣誉教授Nikhil R. Pal院士(印度统计研究所)参与指导,中国石油大学(华东)为第一署名单位。该项工作得到国家自然科学基金、国家科技重大专项、山东自然科学基金、中央高校基本科研业务费、中国石油天然气集团公司重大科技项目以及山东省高校青年创新科技支撑计划的资助。 特征选择技术也称属性选择,是指从原始特征或属性中选择出最有效的特征或属性以降低数据维度的过程,它是人工智能数据预处理环节的重要步骤,也是大数据处理技术的重要环节。该项工作在神经网络中嵌入Group Lasso惩罚项并实现特征冗余控制,在选出对解决问题最有帮助、蕴含信息量最大的特征或属性的同时,控制所选特征子集的冗余程度,以达到降维的最优效果,从而使模型的泛化能力更强,降低神经网络模型产生过拟合的风险。 题目为《基于L1正则化的神经网络结构优化模型设计与分析》(Learning Optimized Structure of Neural Networks by Hidden Node Pruning With L1Regularization)的研究论文发表在国际人工智能领域权威期刊IEEE Transactions on Cybernetics。硕士生谢雪涛和博士生张华清为论文共同第一作者,王健副教授为通讯作者,我校荣誉教授Nikhil R. Pal院士(印度统计研究所)参与指导,中国石油大学(华东)为第一署名单位。该项研究成果得到了国家自然科学基金、山东省自然科学基金和中央高校基本科研业务费的资助。 该项工作借助L1正则子具有的稀疏表达能力,提出两种神经网络结构优化学习模型;本项工作另外一个突出贡献就是提出了一种简单且具有通用性的收敛性证明方法,同时保证了模型设计的合理性。实验结果表明所提出模型具有强大的鲁棒性、广泛的适用性、理想的剪枝能力和良好的泛化能力,适用处理高维大数据。该研究成果在人工智能与深度学习构造最简网络结构方面具有很强的指导作用和应用推广价值。
中国石油大学(华东) 2021-02-01
基于真实世界临床数据的科学研究与中药新药发现平台 ——中医临床数据仓库平台及挖掘分析方法
在医学领域首次应用商务智能软件(Business Objects XI)作为中医临床数据仓库OLAP分析的软件基础。开发实现了基于细节数据模型、多维数据模型和海量临床诊疗数据的探索性分析、展示系统,分析展示的内容包括名老中医经验传承、重大疾病的病证及临床表现要素关系等的主题分析集。可从数据概况、方剂、药物、疾病、症状、治法和证候等方面分别对名老中医和重大疾病临床数据进行多种关系知识的探索性分析。同时,对分析结果可进行实时查询、导出和展示(下图是一位名老中医某经典处方的临床应用证候分布情况)。    本实验室与中国中医科学院合作进行中医临床数据仓库与挖掘分析平台,以及中医临床数据挖掘方法的研究,实现了对中医临床采集病历数数据的集成与整合,数据挖掘与分析的中医临床数据仓库及挖掘分析平台,该平台旨在支持从真实世界中医临床诊疗中产生海量科研分析用数据,并以真实、高质量的数据为基础进行中医临床与理论研究,为中医临床疗效评价、临床中药新药创制提供客观的医学证据和适宜的数据分析方法。该成果于2009年12月获得国家科技进步二等奖。   名老中医OLAP展示例子 1.2多维分析与复杂网络分析系统   以中医临床数据中症-证-治的复杂关系和复杂网络分析方法研究为出发点,开发实现了中医临床复杂网络分析系统。该系统包括如联机数据筛选、复杂网络建模、统计特性分析、可视化网络数据筛选等基本功能,能够支持中医临床诊疗数据中的疾病(中西医)、症状、证候、药物等实体内部元素以及实体之间元素的网络模型构建和多种复杂网络分析方法如节点中心性分析、社团分析、节点相似度分析等。从大量的临床数据中分析获得临床核心处方及其主要适应症,以及随症加减信息。该系统采用Eclipse 富客户端(Rich Client Platform, RCP)和Java语言开发(下图是该系统的主界面)。  在医学领域首次应用商务智能软件(Business Objects XI)作为中医临床数据仓库OLAP分析的软件基础。开发实现了基于细节数据模型、多维数据模型和海量临床诊疗数据的探索性分析、展示系统,分析展示的内容包括名老中医经验传承、重大疾病的病证及临床表现要素关系等的主题分析集。可从数据概况、方剂、药物、疾病、症状、治法和证候等方面分别对名老中医和重大疾病临床数据进行多种关系知识的探索性分析。同时,对分析结果可进行实时查询、导出和展示(下图是一位名老中医某经典处方的临床应用证候分布情况)。  获奖证书   1.中医临床数据仓库与挖掘分析平台 通过分析中医临床数据元素及其多维、多层次的关系特点,研究设计了中医临床参考信息模型,以及为基础构建中医临床数据仓库细节数据模型和多维数据模型,建立以数据仓库为核心的数据整合、数据抽取/转换/转载和数据整理、数据挖掘、OLAP和统计分析的智能信息处理平台。该平台以中医临床数据仓库及其运行环境工具的构建为基础,基于实际的临床诊疗数据,实现对中医诊疗数据进行多主题、多粒度、多需求、高效、快捷的展示、研究和查询检索,并支持基于Web的OLAP主题应用,为名老中医经验继承研究、中医临床评价研究和临床科研提供实际的诊疗数据证据和知识来源,以支持临床科研决策分析,满足中医临床评价研究的探索性分析需求。针对中医临床数据的特点,研究体现中医临床数据模型特点的数据挖掘新方法,为面向中医临床研究的数据挖掘和机器学习方法研究提供新的思路和研究方向。该平台的构建初期以重大慢性疾病:中风、冠心病和糖尿病诊治规律,以及名老中医经验传承研究为支持目标。   中医临床数据仓库平台   1.1中医临床数据预处理技术临床数据的预处理包括数据整合、数据整理和数据转换等技术,我们面向中医临床数据结构内容以及中医临床研究的分析需求,实现具有完善的数据抽取-转换-装载(Extraction-transforming-loading,ETL)、数据整理和数据转换导出功能的数据前处理软件。该软件针对医学数据利用中的分布式(多采集点)采集、患者隐私保护和大规模数据处理的特点,采用灵活的数据映射配置和临床术语库衔接等方式把各采集点数据导入到临床数据仓库中,并支持批量数据核查和数据规范整理(对临床数据中的术语性数据如症状体征、诊断和药物等进行概念化语义规范)功能。   在医学领域首次应用商务智能软件(Business Objects XI)作为中医临床数据仓库OLAP分析的软件基础。开发实现了基于细节数据模型、多维数据模型和海量临床诊疗数据的探索性分析、展示系统,分析展示的内容包括名老中医经验传承、重大疾病的病证及临床表现要素关系等的主题分析集。可从数据概况、方剂、药物、疾病、症状、治法和证候等方面分别对名老中医和重大疾病临床数据进行多种关系知识的探索性分析。同时,对分析结果可进行实时查询、导出和展示(下图是一位名老中医某经典处方的临床应用证候分布情况)。   名老中医OLAP展示例子    以中医临床数据中症-证-治的复杂关系和复杂网络分析方法研究为出发点,开发实现了中医临床复杂网络分析系统。该系统包括如联机数据筛选、复杂网络建模、统计特性分析、可视化网络数据筛选等基本功能,能够支持中医临床诊疗数据中的疾病(中西医)、症状、证候、药物等实体内部元素以及实体之间元素的网络模型构建和多种复杂网络分析方法如节点中心性分析、社团分析、节点相似度分析等。从大量的临床数据中分析获得临床核心处方及其主要适应症,以及随症加减信息。该系统采用Eclipse 富客户端(Rich Client Platform, RCP)和Java语言开发(下图是该系统的主界面)。     中医临床复杂网络分析系统  1.3 真实世界中医临床有效处方发现系统 中药新药创制与研发是极具挑战和机遇的领域,当前化学制药和单成份药物研发已经出现明显的瓶颈,传统植物/天然药以及多成份复方药物的研发成为国内外关注的焦点。而从多成份调控和多靶点机理的研究为主要视角的网络药理学更成为新的趋势和方法。针对中医临床诊疗过程中具有证-治-效信息,且个体性的真实世界诊疗实践特点,我们研究基于大规模临床诊疗数据进行有效处方分析和发现的问题,通过对以中药复方为重点的治疗手段药物组成原理的分析,基于复杂网络模型和方法研制形成了有效核心处方及适应症分析方法、有效临床中药筛选与发现系统,对基于真实世界临床诊疗数据分析获得有效处方知识的方法、技术平台和示范应用进行了探索和初步实践,初步表明从真实世界临床诊疗数据中发现和挖掘有效方药是一种可行的途径,有望为中医新药创制提供可以验证的新处方、新药物等临床有效目标药物。     1.  中医临床数据挖掘分析方法 海量观察型临床数据是中医辨证论治数据的主体内容,具有复杂、多维和多关系的特点。从大规模中医临床观察数据中分析提炼形成有意义的临床假设或诊疗知识如有效处方、人群划分、药症关系以及多阶段优化治疗方案等,是实现从复杂、系统的中医辨证论治过程中发现并确认有效优化的临床诊疗处方及其药物组成的基本方法。中医临床数据包括门诊数据和住院数据两大主要部分,其数据内容由临床表现、诊断和治疗(临床疗法)三部分核心内容(如下图),其中辨证知识、证候分布、药症关系、方证关系和药物组成等是数据挖掘和分析的主要目标,而所有这些知识的有效性的评价依据是临床疗效,即确认和发现临床有效的中医诊疗知识是中医临床数据挖掘分析方法的主要有价值研究目标。    中医临床数据挖掘问题:在疗效信息的约束下,验证和发现有价值的临床诊断/治疗关系知识。  2.1基于复杂网络的中药配伍分析方法 人们通过对中医临床处方数据的初期分析,并与临床专家的交流中发现,名老中医的临床复方的组织特性体现在两个层次。第一层次为临床医生一般以经典复方(包括经方、时方和验方等)为基础进行临床处方;第二层次为在药对或药症关系基础上的药物随症加减处理。这两个层次的临床处方配伍过程形成了具有核心处方结构,而又具有较大灵活性的处方集合。因此,通过对名老中医处方集的共性网络结构分析,能够发现体现其处方思维和学术特点的核心处方配伍结构,从而辅助进行名老中医经验的传承和整理研究。通过应用基于无尺度网络现象的网络分析方法进行研究。无尺度网络作为复杂系统研究的一种实证现象和方法,对基于网络研究复杂现象和复杂系统的方法具有很大的推动作用。具有宏观无尺度现象的网络在拓扑上存在幂律现象,即节点的度分布服从幂函数分布。这在医生处方中的具体体现就是某医生对药物的使用具有比较集中的趋势,某些名老中医偏好使用某些药物,使得这些药物的已有或潜在功效得到更大的发挥或挖掘。 我们基于网络中权值的幂律分布规律,实现了多层核心子网分析方法,能够从复杂的中药配伍网络中抽取多层核心子网。该算法已经在名老中医处方配伍经验的分析中得到广泛应用。其得到的结果具有直接而明确的临床含义,且可靠性较强。第一层核心子药物子网一般解释为共性的核心处方;第二层解释为主要药物配伍;第三层解释为次要药物配伍。这些药物配伍分别对应样本的核心病机如主要疾病和主要证候等、兼证和加减症状等。以下是两类特定中药处方:1287个肝脾不调证(GPBT)处方和752个2型糖尿病合并代谢综合征处方的分析结果。   特定中药处方的核心药物配伍网络和主要加减网络,其中的网络中的节点是药物,边的权重表示两相关药物配伍使用的次数。 2.2基于隐主题模型的疾病人群临床特征类别分析方法 症状-中药-诊断主题模型(Symptom-Herb-Diagnosis Topic model,SHDT), 用来提取中医临床数据中的症状、中药和诊断间的隐主题结构。SHDT模型是LDA主题模型在多关系应用中的扩展。该模型的核心思想是假设一类样本里面包含有多个主题,例如,一类糖尿病人群有不同的并发症,且这些主题所包含的信息特征(以症状来表达)具有相对完整性和独立性。SHDT把每个主题看作是症状上的多项式分布,并通过症状来表达主题的内容;同时,把每种中药看作是主题上的多项式分布,因为一类中药可以治愈多种症状/疾病;又因为一种诊断包含多种症状/疾病,于是把诊断看作是对主题的描述,构建一种“症状-中药-诊断”主题模型。SHDT模型这种分析原理和思路与中医辨证论治过程基本吻合,它可以客观地按照症状找到自然分类人群,给出诊断描述特征和中药治疗特征。SHDT模型分别在2型糖尿病、冠心病和肝炎等慢性疾病中进行人群特征分析。实验结果说明了该模型具有较好的适宜性和科学性,分析结果能够较为完整的反映特定疾病中相关的主要人群特征类别。   症状-中药-诊断主题模型,图中三个黑色圆圈,代表显变量(观察变量),其中s 表示一个采样症状,表示患者p的所有药,表示患者p的所有诊断。白色圆圈代表隐变量,其中z 采样症状s对应的主题,x表示s对应的药,u表示s对应的诊断。矩形框表示重复采样。外部矩形框表示在集合中有P个患者。内部矩形框表示对患者p的个症状、主题、药物以及诊断重复采样。 2.3基于内隐对照和部分可观察马尔可夫决策过程模型的动态序贯处方治疗方案优化方法 中医辨证论治是症-治-效紧密相关的个体、动态的复杂干预过程,动态序贯干预是中医临床治疗慢性疾病的基本方法。以患者为轴心的治疗原则和医生的个体性特点,使得中医动态序贯干预过程中包含多样化的治疗方案。在临床诊疗经验知识的形成阶段,医生往往通过对治疗前后患者健康状态的判断,试图获得较好的治疗方案的认识,进而逐步形成固化的有效经验性治疗方案。因此,在无外部对照的情况下,如何从大规模的复杂多维临床关系数据中发现并确认在临床实际中较优的动态序贯诊疗方案是有效临床方案形成的重要课题。 考虑到实际可行性和研究代价的问题,在未有明确的有效干预方案形成的临床研究初期,无外部对照的传统中医经验整理和归纳普遍存在,且长期的中医学实践表明是有效的。但由于临床诊疗信息关系的复杂性,基于传统经验整理方式形成有效治疗方案是一个较为漫长的过程。 因此,如何借助源自真实世界(无外部对照)的大规模临床观察数据,进行挖掘分析,以辅助发现和确认较优的临床治疗方案成为辨证论治临床评价研究的关键问题之一。我们采用部分可观察马尔可夫决策过程模型(POMDP)对此问题进行研究,实现了基于POMDP的中医临床处方优化分析方法,以探寻从来自临床实际的大规模观察性临床数据中发现较优或最优的动态序贯治疗方案,为中医辨证论治有效动态干预方案的形成和临床验证提供参考知识。   中医临床诊疗过程对应的POMDP模型 1.  成果的推广应用 本成果已经在国家科技重大专项:重大传染病防治、重大新药创制等两个项目;国家科技支撑计划项目-名老中医经验传承研究;北京市科技攻关项目和国家中医临床研究基地等项目中进行推广应用。分别对艾滋病、肝炎和肺结核等传染病的中医药防治规律,从中医临床中分析确认有效处方与药物,名老中医的辨证论治个体诊疗经验,中风、冠心病和糖尿病等重大慢性疾病的临床诊治规律,以及全国10余家重点中医院诊疗优势病种(如上海龙华医院的中医胃癌治疗、骨关节病治疗;河南中医学院一附院的中医艾滋病治疗、中医慢性阻塞性肺炎治疗等)的临床诊疗优化方案等进行应用研究。逐步探索和完善中医临床科研一体化技术体系,支持基于临床诊疗实践及其真实世界诊疗数据,进行中医临床研究和中药新药创制研究的医学模式。   北京地区22家单位应用分布图
北京交通大学 2021-04-13
我国超重力领域基础科研的“国之重器”取得重要进展
7月16日凌晨1时28分,全球容量最大超重力离心模拟与实验装置的实验大楼,在杭州城西科创大走廊正式结顶,这意味着我国超重力领域基础科研的“国之重器”取得重要进展。
科技日报 2023-07-16
吴隽:高校数字基础设施建设需要“安全可靠、经济高效”
中国电信作为建设网络强国和数字中国、维护网信安全和教育信息化建设的国家队、主力军,在教育部的指导和支持下,在各方的协同和帮助下,举全集团之力,全面助力我国教育信息化事业发展,在协同创新、产教融合、人才培养、科教创新等方向始终以高度的责任感支撑高校数字化转型。下面我给大家汇报一下中国电信在高校数字化转型中的探索与实践。
中国高等教育学会 2023-01-10
G蛋白偶联受体信号转导多样性的动态结构基础
G蛋白偶联受体(GPCR)家族是最大的一类膜蛋白家族受体,在视觉,嗅觉,味觉以及激素和神经递质等信号转导中发挥着重要的生理功能,同时也是关键的药物靶标。近年来,随着越来越多GPCR在失活和激活状态下的晶体及电镜结构的解析,人们对于这一大类受体的激活机制有了愈发深入的了解。然而,GPCR受体的失活和激活结构仅代表了信号转导过程起始和终止时相对稳定的构象状态,受体在激活过程中发生了复杂多样的动态构象变化,这些变化很可能与不同配体引起的信号转导多样性相关。目前,GPCR在激活过程中的动态构象变化仍不清楚,国际上这方面的研究尚处于起步阶段。液体核磁共振方法能够在原子分辨率水平研究蛋白质相互作用和构象变化,提供晶体或电镜结构缺失的信息,是GPCR动态结构与激活机制研究中不可缺少的重要研究手段。 M2毒蕈碱型乙酰胆碱受体(M2R)是一个典型的GPCR,在调节人体心率和许多中枢神经系统功能中发挥重要作用,是研究GPCR 信号转导、调节以及药物设计的模式受体。该项研究通过在M2R中引入13CH3-ε-甲硫氨酸同位素标记探针,检测受体在结合一系列配体小分子时的核磁图谱变化(图一),分析M2R动态构象变化与这些配体对G蛋白激活和抑制蛋白 (arrestin)招募效应差异的相关性。同时,结合分子动力学模拟实验进一步解释不同配体结合导致受体激活时构象和功能变化差异的分子机制。该项研究首次将M2R的配体结构、受体构象变化以及配体功能多样性联系起来,揭示了M2R信号转导多样性可能的分子机制,并为针对这类重要受体的药物研发提供了理论指导。
北京大学 2021-04-11
纳米材料毒理学评价及环境医学应用的基础研究
成果介绍以国家需求为导向,通过医工结合,系统研究了多种重要纳米材料的毒理学效应与机制、构建了纳米生物安全性评价与研究的新方法。技术创新点及参数1、传统毒理学评价程序基本适用于对纳米材料的毒理学评价,但必须在材料制备、分散、表征、尺寸、结构、修饰、暴露方式等方面予以约定;2、率先构建了基于秀丽线虫、用于纳米材料急性、慢性、神经、生殖毒性等毒理学评价与研究替代模型;3、基于纳米材料的修饰改性及与生物界面相互作用原理,原创性设计了基于氮掺杂碳纳米管、过氧化物酶及其底物识别的高灵敏度纳米生物传感器。市场前景建立纳米生物安全性评价体系实施条件1、酶、荧光小分子和量子点标记的新型纳米生物探针;2、了环境污染健康效应生物标志检测信号放大新原理新方法;3、基于石墨烯的多种蛋白质和DNA损伤检测传感器,并用于环境污染致DNA损伤的快速检测。
东南大学 2021-04-13
藏药波棱瓜子抗肝炎药效物质基础研究与评价
本成果为获得省部级和学会级三等以上奖励的重点纵向成果,获2013年四川省科技进步三等奖(主持)。该成果的立题基于研究开发民族药(藏药)创意,具有新颖性和实用性,遵循了传统藏医经验,以临床常用抗肝胆病藏药波棱瓜子为研究对象,经过数年潜心研究,开展了系列工作:有效部位筛选和化学成分研究;有效部位指纹图谱和质量标准研究;有效部位抗肝损伤、抗病毒药效学研究;并在此基础上进行了颗粒剂、滴丸为主要剂型的开发和剂型的药效学评价,探索了脂质体和纳米混悬剂等现代新剂型,并进行军队医院制剂试用。
西南交通大学 2016-06-24
高效、节能、低碳内燃机余热能梯级利用基础研究
从内燃机能量平衡来看,动力输出功率一般只占燃油燃烧总热量的30%~45%(柴油机)或20%~30%(汽油机),除了不到10%用于克服摩擦等功率损失之外,其余的余热能没有得到利用,主要通过冷却回路的散热以及排气被排放到大气中。因此,将内燃机的余热能回收再利用是提高总能效率、降低油耗的一个有效途径。本项目从提高内燃机总能效率,降低油耗和CO2排放的目的出发,开展内燃机余热能梯级利用的研究,探索新理论和新方法。重点解决:①内燃机联合热力循环非稳态热能流转化规律和效率协同优化;②内燃
天津大学 2021-04-14
年产10万吨废润滑油再生基础油项目
废润滑油经过适当的工艺处理成为再生润滑油,从环境保护、资源有效合理利用和经济角度来看都是一种合适的处理方法,不仅可以充分利用资源,还可带来可观的经济效益,本项目是以废润滑油为原料,加工再生产多种规格的润滑油基础油及其它副产品,设计生产能力为10万吨/年。 采用加氢工艺,由原料预处理、加氢再生、加氢产品分馏等3个主要单元组成。操作条件是在高温、高压、催化剂的作用下进行,废润滑油中各类氧化物、添加剂等与氢反应,生成相应的加氢化合物以除去废油中的杂质,加氢工艺使用加氢脱硫或加氢补充精制催化
常州大学 2021-04-14
首页 上一页 1 2
  • ...
  • 39 40 41
  • ...
  • 81 82 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1