高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
航空航天大型复杂结构机器人智能制造技术与装备
新一代航空航天器的跨代高性能要求使得其尺寸越来越大、材料体系越来越多、结构越来越复杂。传统制造周期长、质量不稳定,无法满足型号质量和精度要求,亟需变革制造模式。工业机器人智能制造技术与装备是解决该难题的最佳新途径。但机器人精度低、刚性弱、加工稳定性差等难题制约了其应用于航空航天大型复杂构件的高效高精制造,且核心装备被国外发达国家垄断,迫切需要突破基于移动机器人的制造核心技术与装备,形成基于移动机器人的大型复杂构件原位加工与装配融合的制造能力,打破国外垄断,实现自主可控。技术特征围绕航空航天大型复杂构件的高效、高精、高质量制造急需,突破了基于误差相似度的机器人精度补偿、机器人变刚度建模与加工颤振抑制、融合多源信息的在线感知与自适应工艺、多功能末端执行器研制等一系列关键技术,构建了移动机器人智能制造技术体系,自主研发了多台套多功能末端执行器和高精度大负载工业机器人智能钻/铆/铣制造装备。效益分析:项目的成功研制拓宽了工业机器人应用领域,已在歼20、歼10、L15高教机、大飞机、××导弹、天宫2号空间站等国家重点型号研制和批产中应用,实现了歼20翼面、歼10机翼部件、高教机翼面、天宫二号空间站舱体等航空航天产品核心复杂大部件的生产,为我国航空航天大型复杂构件制造提供了技术与装备支撑。此外,成果还在国产机器人、精密零件制造等龙头企业实现应用推广,核心专利转化1999.2万元,近三年新增直接经济效益达11.2409亿元。
南京航空航天大学 2021-04-10
高端装备制造自动化生产线系统关键技术及工程应用
高端装备制造是带动整个制造产业升级的重要引擎。我国高端装备制造存在的主要问题是装备可靠安全性差、智能化水平低、控制基础技术落后。多年来,本学科依靠重大技术创新,探索和开创高端工业制造装备自动化控制技术体系,突破复杂工业制造环境下的机器实时精密鲁棒视觉感知、高速高精度运动控制和高可靠分布式自主协同控制三大关键技术。研制出自主知识产权产业的大型工业制造机器人自动化生产线成套智能控制系统品牌,并产业化3120台套设备,技术成果获国家科技进步二等奖3项,省部级发明科技进步一等奖5项。研发了国内第一台安瓿、大输液医药异物视觉检测机器人,国内第一条大型塑料瓶输液自动化生产线成套装备,国内第一条非PVC模软袋输液自动化生产线成套装备,以及国内第一条塑料安瓿吹灌封三合一自动化成套装备。
湖南大学 2021-04-11
面向全生命周期的产品数字化设计、制造及管理平台
通过该项目的实施与应用,实现公司销售、设计、生产及管理等信息的集成与共享,实现全生命周期的产品数字化设计、制造管理,实现大批量定制的产品数字化配置设计管理,同时优化产品族结构,实现基于二维图纸和三维模型相结合的产品设计制造和管理,提高产品设计、制造与管理效率,缩短产品设计周期,增强公司的综合竞争能力。 目前已完成平台原型系统的开发,成功在国内多家制造型企业进行应用实施。 可提高企业产品设计制造效率,使产品设计、生产周期缩短为原来的70%,客户需求的响应周期缩短为原来的60%;系统运行稳定、可靠,在技术上达到国内领先水平。
北京航空航天大学 2021-04-13
应用于高质量成像系统的光学微纳阵列制造技术
传统图像传感器模组制造(a)和晶圆级图像传感器模组制造(b)的比较; (c)为封装切割后的晶圆级图像传感器模组利用晶圆级技术,使得 图像传感器模组镜头的生产都采用半导体制备技术,平均每片晶圆上 都有成百上千个光学元件,经过大规模微纳集成后,可以大幅缩减图 像传感器模组的尺寸,同时将
复旦大学 2021-01-12
高性能龙门加工中心整机设计与制造工艺关键技术及应用
建立了龙门加工中心几何误差整机-部件-零件-结构的精度正向递推分配、精度保持薄弱结构-零件-局部动件-整机的精度逆向修正补偿方法,提升了龙门加工中心大行程工况加工精度要求 一、项目分类 关键核心技术突破   二、成果简介 高性能龙门加工中心是航空航天、高铁船舶、核电等大型精密零件加工的重要装备。高性能龙门加工中心设计研发中遇到了多部机型谱匹配、大行程精度均衡、大惯量爬行抑制等三大技术难题,急需新的设计方法与制造工艺的支撑。在国家科技重大专项等课题资助下,浙江大学谭建荣院士科研团队开展了高性能龙门加工中心整机设计与制造工艺关键技术及应用研究,取得了一系列重要成果: (1)发明了高性能龙门加工中心整机布局方案骨架型谱。建立了多部机匹配的龙门加工中心布局方案骨架型谱,揭示了龙门加工中心多体系统低序体阵列拓扑约束解耦机理,提升了龙门五面加工中心、数控龙门镗铣床等一体化龙门框架多部机布局型谱自适应匹配性能,一阶固有频率由54Hz提高到63Hz,结构件刚度由50.4N/μm提高到55.6N/μm,打破了国外大型精密动梁五面体龙门加工中心垄断。 (2)发明了基于螺旋变换的多轴联动精度分配方法。建立了龙门加工中心几何误差整机-部件-零件-结构的精度正向递推分配、精度保持薄弱结构-零件-局部动件-整机的精度逆向修正补偿方法,提升了龙门加工中心大行程工况加工精度要求,X/Y/Z轴行程定位精度由0.08/0.06/0.05mm提高到0.03/0.02/0.015mm,整机几何精度达到发达国家同类产品Ⅰ级标准。 (3)发明了龙门加工中心运动部件爬行特征判定方法。建立了基于动梯度粘滑特性的动件爬行特征判定方法,揭示了大惯量动件重载负荷低速摩擦副防爬机理,提升了重载低速大范围的静压导轨低摩擦副高精度控制性能,加工工件表面粗糙度从Ra0.4提升至Ra0.2,转台平面跳动由0.02mm提高到0.01mm,转台热浮升变形由0.2mm提高到0.05mm。 研制了行业首创的龙门加工中心设计制造工具集,在国家重大工程的关键部件精密加工中得到成功应用,并推广应用到国家重点机床企业的高端加工中心设计研发中。项目突破了发达国家对我国龙门加工中心技术封锁,研发的机床产品成功替代进口,对提高我国重大精密装备国产化率与自主创新能力等起到了重要作用。
浙江大学 2022-07-22
一种抗拉强度560~590MPa热轧轮辋用钢及其制造方法
(专利号:ZL 201310681247.X) 简介:本发明公开了一种抗拉强度560~590MPa热轧轮辋用钢及其制造方法,属于轧钢技术领域。本发明采用一种热轧后的分段式冷却工艺,精确控制组织中铁素体、贝氏体和马氏体的尺寸及体积分数,通过组织中的贝氏体和马氏体相提高钢材的抗拉强度,通过控制铁素体晶粒尺寸、体积分数,及采用多段空冷降低钢带残余应力,提高钢材延伸率。本发明热轧轮辋用钢抗拉强度56
安徽工业大学 2021-01-12
基于快速成形制造技术的碳纤维传感元嵌入装置及方法
本发明公开了一种基于快速成形制造技术的碳纤维传感元嵌入装置,包括:工作台;升降和平移模块,安装在工作台上;水平移动台,用于安装和移动快速成形制造结构的任一叠加层;储丝模块;铺丝模块,安装在升降和平移模块的动力输出端,用于在快速成形制造的任一叠加层内牵引和嵌入来自储丝模块的纤维丝;断丝模块,用于切断嵌入快速成形结构中的纤维丝的尾部;纤维丝固定模块,用于在嵌入的起始位置固定纤维丝;本发明还公开了一种基于快速成形制造技术的碳纤维传感元嵌入方法;本发明通过设置铺丝模块和水平移动台,可以快速有效地将纤维丝自动化嵌入实体结构中,实现自监测智能结构的自动化制造。
浙江大学 2021-04-13
宽量程MEMS风速风向传感器设计与制造关键技术及应用
"该成果获2018年度高等学校科学研究优秀成果奖(科学技术)技术发明类一等奖。1. 针对MEMS风速风向传感器低风速误差大、高风速难以测量的问题,发明了风速风向传感器深槽隔热结构,降低了衬底横向热传导,提高了灵敏度,降低了测量误差,扩大了传感器的量程。 2. 针对MEMS风速风向传感器高风速难以测量的问题,建立了传感器系统级模型,实现了闭环控制;提出了风速风向传感器的温度自平衡测控方法,实现了60m/s的量程,解决了长期以来风速风向传感器量程难以提高的技术难题。 3. 针对MEMS风速风向传感器野外工作防护技术问题,发明了风速风向传感器的陶瓷圆片级倒装封装技术,提出了导热凸点与导电凸点结构及工艺技术;发明了传感器嵌入式组装结构,突破了传感器野外工作的可靠性技术瓶颈。 4. 针对MEMS风速风向传感器受环境温度、湿度影响问题,在国际上首次建立了风速风向传感器的湿度效应模型;基于传感器材料与结构的温度特性,建立了风速风向传感器温度效应模型,保障了传感器长期工作的稳定性。 "
东南大学 2021-04-13
人才需求:从事化学或医药制造行业,具有较高技术水平
1.从事化学或医药制造行业,具有较高技术水平; 2.教授、博导,获得省部级科技奖,多论文著作等
山东科源制药股份有限公司 2021-09-13
人才需求;自动化控制、机械制造方面几耐火材料方面
电力行业、石化行业、铝行业、工业炉等行业工程设计、应用、造价等技术人才 自动化控制、机械制造方面几耐火材料方面
山东鲁阳节能材料股份有限公司 2021-08-30
首页 上一页 1 2
  • ...
  • 51 52 53
  • ...
  • 57 58 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1