高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于单纯形法的泥石流次声定位方法
本发明公开了一种基于单纯形法的泥石流次声定位方法,采用(1)放置泥石流次声检测装置;(2)设定信息空间,确定信息空间各未知量类型,这些未知量为:泥石流发生地点坐标(,,);泥石流发生时间;次声波传播速度,组成五维信息空间(,,,,)。再经(3)初始化顶点、(4)计算顶点误差、(5)顶点排序;(6)执行单纯形操作步骤。实现泥石流发生地点的定位,经过有限次数的单纯形操作之后,将误差最小的那个顶点坐标作为泥石流发生地点的位置,从而实现泥石流的定位。本发明非线性定位,定位精度高,且基于单纯形操作,实现容易,计算量小。可以满足实时泥石流定位的需要。
西南交通大学 2016-10-20
基于限幅噪声和子载波干扰消除的PTS-OFDM方法
本发明属于通信抗干扰技术领域,尤其涉及正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术、限幅技术(clipping)、部分传输序列技术(Partial Transmit Sequence,PTS)、相移键控(Phase Shifting Keying,PSK)调制技术及其相关的OFDM技术。基于限幅噪声和子载波干扰消除的PTS‑OFDM方法,在有CFO的系统中,将限幅噪声与频率偏移综合考虑,在PTS中找出一个最优相位。本发明通过综合考虑限幅噪声与CFO引进的ICI,从PTS中选择一个最优相位,使系统的BER性能得到显著的提高。
电子科技大学 2021-04-10
一种多功能悬式绝缘子再现检测系统
本实用新型公开了一种多功能悬式绝缘子在线监测系统,包括:泄漏电流采集装置,用来实时监测 悬式绝缘子的泄露电流数据;Sensor-应力监测装置,用来实时监测悬式绝缘子的应力数据;污秽检测装 置,用来实时监测悬式绝缘子的污秽数据;导线风偏检测装置,用来实时监测悬式绝缘子的导线风偏数 据;控制器通过信号线与泄漏电流采集装置、Sensor-应力监测装置、污秽检测装置和导线风偏检测装置 均相连;控制器用来收集数据,并将收集的数据通过发射天线发送出去,信号接收器通过接收天线接收 数据,并将接收的数据信号发送给终端机;太阳能电池用来供电。本实用新型设计精简,成本低廉,可 很大程度保证悬式绝缘子的正常运行,从而预防事故发生,确保输电线路的安全和稳定运行。
武汉大学 2021-04-13
一种真核启动子及其制备方法和应用
本发明公开了一种真核启动子及其制备方法和应用,该启动子包括14种具有不同转录活性的突变CMV启动子中的任意一种,由人野生型CMV启动子中的NF?κB结合位点以不同的组合方式替换人工碱基序列获得。本发明制备得到一系列新的哺乳动物启动子,其中三种启动子(T1P2、T1和P2)具有比人野生型CMV更强的转录活性,这三种启动子高转录活性启动子在这些生物医学领域具有潜在的重要应用价值。此外,还产生了一系列具有各种转录活性的工程化哺乳动物启动子,可以用于灵活控制合成生物学中的基因表达输出量。本发明真核启动子的制
东南大学 2021-01-12
表面和水中 ATP 一体化快速检测拭子
已有样品/nTMATP一体化快速检测拭子,采用专利的吸管式水样采集器和棉拭子,以及液态稳定酶和配方,与市面上的手持式ATP生物发光检测仪联用,能在10几秒内实现ATP的高灵敏检测,具有超级便捷、出众的灵活性、卓越的准确性和重复性等优点,2-8°保存条件下能保证1年之内稳定。室温(20-25°C)可保存30天。寻求国内外产品销售代理商和为ATP检测仪器提供配套试剂。由于三磷酸腺苷(ATP)是所有生物(包括细菌,细胞等)中的能量分子,因此ATP是完美的表面和水洁净程度指示分子,广泛用于食品制造、医院环境
中国科学院大学 2021-01-12
一种五味子有机酸分析方法
【发 明 人】殷放宙;殷武;李林;陆兔林;蔡宝昌;李伟东 【摘要】 本发明公开了一种五味子有机酸分析方法。本发明提供了采用GC-MS分析五味子炮制品中有机酸的分析方法,同时提供了五味子炮制品中4-氧代戊酸的含量测定方法。该分析方法是:取五味子粉加入硫酸甲醇、NaCl及乙醚-氯仿混合液、无水硫酸钠,干燥,制得样品;进行GC-MS分析。本发明针对五味子炮制品的有机酸的分析方法具有较强的专属性和良好的重现性,为五味子炮制前后有机酸的质量控制提供了依据。
南京中医药大学 2021-04-13
一种聚簇图集合中的子图检索方法
本发明公开了一种聚簇图集合中的子图检索方法,包括:索引 建立步骤,根据聚簇图的结构信息和结点属性计算聚簇图集合中各聚 簇图之间的相似性,根据各聚簇图之间的相似性采用层次聚类算法将 相近的聚簇图聚类,直到剩下一个聚簇图;子图检索步骤;根据用户 发起查询图的结构以及顶点属性,对聚簇图索引树采用树的自顶向下 的方式进行查询图的同构匹配。本发明通过在数据集合中建立树形索 引,尽早过滤不包含查询图的数据项,进行加快查询速度,提
华中科技大学 2021-04-14
拓扑异构酶I/ II双重催化抑制剂诱导耐药肿瘤坏死性凋亡
利用金属配合物性质易调控的优点,通过改变电荷、脂溶性,实现金属配合物对细胞器的靶向性富集调控(Coord. Chem. Rev., 2019, 378, 66)。在此基础上,利用金属配合物的长激发态寿命,构筑一系列单/双光子的光敏剂用于细胞器靶向的癌症治疗(Nat. Chem., 2019, 11, 1041; Nat. Commun., 2020, 11, 3262; Angew. Chem. Int. Ed., 2015, 54, 14049; 2017, 56, 14898; 2019, 58, 14334; PNAS, 2018, 115, 5664; 2019, 116, 20296),为开发金属配合物用于生物治疗提供了新的研究思路。然而,与传统化疗药物类似,这类光敏剂通过诱导肿瘤细胞凋亡实现肿瘤治疗,同样也面临可能的耐药风险。至今为止,金属配合物诱导肿瘤细胞非凋亡性死亡、实现克服肿瘤耐药研究尚处于起步阶段。在前期实现诱导肿瘤细胞坏死、涨亡等非凋亡性死亡的工作基础上(Chem. Sci., 2018, 9, 5183; Chem. Commun., 2018, 54, 6268; Angew. Chem. Int. Ed., 2020, 59, 3315),巢晖教授课题组开发了基于钌(II)配合物的拓扑异构酶 I/II双重催化抑制;进一步研究发现,配合物能诱导耐药肿瘤细胞坏死性凋亡,有效克服肿瘤耐药 通过辅助配体改变配合物的电荷和脂溶性,从而调控配合物的细胞摄取量和细胞器靶向性。其中环金属化配合物Ru7在具有高细胞摄取量的同时,实现了细胞核靶向富集(图2)。DNA拓扑异构酶(topoisomerase,Topo)为催化DNA拓扑学异构体互相转变的酶的总称,可调控DNA转录、复制和基因表达。根据催化机制,Topo酶划分为Topo I和Topo II,因在肿瘤细胞中高表达而成为临床肿瘤治疗靶点。喜树碱(Topo I抑制剂)和依托泊苷(Topo II抑制剂)是其代表性药物,但这类单一酶抑制剂的疗效受多种因素限制,与之相比,Topo I/II双重抑制剂具有显著的治疗优势。利用DNA松弛、断裂和凝胶电泳迁移率转移分析,辅助分子对接模拟计算,证实Ru7通过π-π堆积、阳离子-π相互作用以及氢键与Topo I/II的催化口袋相结合,从而阻止DNA拓扑异构酶与DNA的结合,是罕见的Topo I/II双重催化抑制剂。
中山大学 2021-04-13
一种基于 WAMS 时间断面信息和拓扑信息的故障诊断方法
本发明公开了一种基于 WAMS 时间断面信息和拓扑信息的故障 诊断方法。该方法包括: (1)通过 WAMS 获取互联电网中各量测点的三 相电压和电流的幅值和相角数据;(2)使用获取的三相电压和电流的幅 值数据按照故障诊断启动判据进行计算;(3)对满足故障启动判据的量 测点三相电压和电流的幅值数据进行实时特征量提取,形成实时模式 向量;(4)将量测点 i 提取的实时模式向量与预设的已知故障类型的基 准模式向量集合相匹配,根据匹配结果给出初步故障结果;(5)根据时 间信息和电网拓扑信息对满足启动判据的量
华中科技大学 2021-04-14
高灵敏度有机污染检测用声表面波传感器
团队长期从事纳米材料及纳米结构研究,在长期纳米结构的制备及性能研究基础上,与我国XX工程结合,开展高功率固体激光装置运行环境污染检测方法研究,基于各种纳米结构制作的声表面波传感器检测灵敏度高达pg/mm2(10 12g/mm2)量级,实现了高精密测试,并且针对装置运行环境中不同有机污染物的复杂情况,实现了高选择性、高灵敏度测量,达到了国际领先水平。已通过在线测试并在XX工程中应用,实现订货。 同时在高灵敏度声表面波传感器的研究基础上,团队在声表面波传感器的敏感芯片区建立了不同的敏感薄膜,如氧化硅薄膜、氧化锌薄膜、SiO2/ZnO复合薄膜,实现了对环境污染气体的高灵敏度响应,特别是在声表面波传感器芯片上建立了三维纳米结构敏感材料,同时对其化学修饰,以实现化学、生物毒剂的高灵敏度监测,目前正在和中电集团进行相关的联合工作。 该传感器可用于定量检测/监测各种真空、实验室、大气环境中的微量有机污染物、化学毒剂和生物毒剂。
电子科技大学 2021-04-10
首页 上一页 1 2
  • ...
  • 13 14 15
  • ...
  • 208 209 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1