高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种基于块的子图构建及分布式图处理方法
本发明公开了一种基于块的子图构建及分布式图处理方法,其子图构建方法,包括图分割、对子图中的顶点重新贴标签、将区间与数据片关联、分块和构建子图的步骤;采用启发式的、轻量级的 SGP方法进行图分割,采用用户定义的启发式函数把顶点按顺序指派到 P个子图,具有性能高,边的切割率较低的特点,并且可以兼顾子图工作负载平衡问题;其分布式图处理系统,块分割之后,子图之间以整个内存块为单位进行通信;与现有技术的细粒度通讯方式相比,本发
华中科技大学 2021-04-14
一种可有效降阻的在线自激式自稳定管式换热器清垢及强化换热技术
针对火电机组汽轮机组凝汽器管式换热器、管式空预器易结垢与积灰、换热 端差大,清洗较困难,且运行成本高等问题,提出并设计了一种以带平衡孔的旋 流叶片为核心的清垢、清灰及强化换热装置,其能依靠循环水、烟气的流动实现 旋流叶片自激旋转,强化扰流,实现在线自动清垢清灰及强化换热,且在平衡孔 的作用下,能防止旋流片的偏斜而实现自平衡稳定。应用本方法与装置应用本方 法与装置于火电机组凝汽器,端差可降低为1~3C,应用于火电机组管式烟气换 热器,可提高热力发电厂热效率该装置还可广泛应用于电力、化工、制 药、印染等表面式换热过程,节能减排效果显著。
重庆大学 2021-04-11
高性能动力电池高镍系三元正极材料
一、项目简介动力锂离子电池在社会生产和生活中具有广泛的应用,比如新能源汽车。发展高能量动力锂离子电池关键之一就是发展具备高储能能力的正极电极材料。高镍系镍钴锰酸锂 LiNixCoyMnzO2(NCM)具有高的储能容量(>200 mAh/g)、高的工作电压和理论能量密度(800 Wh/kg),能够满足单体电池能量密度的要求,是当前重点研究对象。本项目成功发展高镍系三元正极材料,包括两个类别即 NCM-1 和 NCM-2。NCM-1 展示了优异的电化学性能,在 2.7-4.5 V 工作电压区间和 0.1C 倍率下放电比容量大约 210 mAh/g;当倍率增加到 5C 时,放电比容量依然可以达到 150mAh/g;在 0.5 C 倍率下,经过 100 次充放电循环后,其容量保持率在 95%以上。NCM-2 放点比容量较低,但是稳定性能更优。二、产品性能优势该系列高镍系三元正极材料具有高的克比容量、优异的循环稳定性和倍率性能。同时,该系列产品采用目前工业化制备方法,便于推广。三、市场前景及应用2018 年中国锂电正极材料市场总产值达 540 亿元,其中三元正极材料占比最大,达 258 亿,总占
中山大学 2021-04-10
灯盏乙素苷元衍生物及其制备方法和其应用
【发 明 人】唐于平;李念光;段金廒【技术领域】本发明涉及药物化学研究领域,具体涉及一类新型的灯盏乙素苷元-6-位衍生物(I),以及它的制备方法和在防治血栓药物中的应用。【摘要】本发明涉及药物化学研究领域,具体涉及一类新型的灯盏乙素苷元-6-位衍生物(I),以及它的制备方法和在防治血栓药物中的应用。药理实验结果表明,这类化合物与灯盏乙素和灯盏乙素苷元相比,具有更好的抑制血小板聚集的作用。本发明提供的灯盏乙素苷元-6-位衍生物(I)可用于由于血栓而导致的一系列疾病,例如心肌梗死、缺血性损伤等疾病。
南京中医药大学 2021-04-13
灯盏乙素苷元Mannich衍生物及其制备方法和应用
【发 明 人】唐于平;李念光;段金廒【技术领域】本发明涉及医药技术研究领域,具体涉及一类新型的灯盏乙素苷元Mannich衍生物(I),以及它的制备方法和在防治血栓药物中的应用。【摘要】本发明涉及医药技术领域,具体涉及一类新型的灯盏乙素苷元Mannich衍生物及其制备方法和在制备防治血栓药物中的应用。实验结果表明,本发明提供的灯盏乙素苷元Mannich衍生物与灯盏乙素相比较,具有更好的溶解性,并且显示出很好的抗氧化、抑制细胞损伤、和抗凝血等药理活性,有望开发成新的防治心肌梗死、老年痴呆症、脑梗塞等疾病的药物。
南京中医药大学 2021-04-13
一种6-甲基灯盏乙素苷元的制备方法
【申 请 号】201410660948.X【发 明 人】李念光;唐于平;段金廒【摘要】本发明涉及化学合成领域,具体涉及中药分子灯盏乙素活性代谢物的制备,将灯盏乙素在强酸作用下水解葡萄糖醛酸分子得到4’,5,6,7-四羟基黄酮,4’,5,6,7-四羟基黄酮与溴苄在敷酸剂存在下反应,生成5,6-二羟基-4’,7-二苄基黄酮,继而在碱性条件下与碘甲烷反应生成5-羟基-6-甲氧基-4’,7-二苄基黄酮,最后5-羟基-6-甲氧基-4’,7-二苄基黄酮在钯碳存在下催化氢化脱苄基得到6-甲基灯盏乙素苷元。本发明步骤简单,易纯化,条件温和,成本低,反应总收率大于70%,合成的产品纯度高,大于99.0%,适合工艺化生产。
南京中医药大学 2021-04-13
浙江大学国家级双创示范基地·三墩元空间
浙江大学国家级双创示范基地·三墩元空间,坐落于毗邻浙江大学(紫金港校区)的宝港科创空间,一期总面积约2500平方米,设有展示区、路演多功能厅、会议厅、办公区、洽谈室、创业项目展示区等多个功能空间,充分满足浙江大学创业者创业、交流、互动、发展等多方面需求。
浙江大学 2022-07-22
二元RuS2多相催化剂的制备方法
(专利号:ZL 201310571564.6) 简介:本发明公开一种二元RuS2多相催化剂的制备方法,属于钌催化剂制备技术领域。该催化剂由载体和活性组分构成,载体为ZSM-5、SBA-15、γ-Al2O3以及SiO2中的任一种,活性组分为Ru,将RuCl3·3H2O溶于乙醇中,将载体放入其中,搅拌混合均匀后烘干,然后放入高压反应釜中程序升温至200~220℃进行预硫化,将预硫化后得到的黑色固体放入真空干燥箱烘干制得二元RuS2催化剂。本发
安徽工业大学 2021-01-12
一种基于四元数理论的立体视觉测量系统
本发明提出了一种基于四元数理论的立体视觉测量系统,包括:输入层1、输入层2、计算模块和输出层,在输入层1中,获得实时视频流;在输入层2中,使用图像语义分割技术分离背景,评估视场内各个物体的清晰程度,选择其中清晰度最高的物体作为显现目标,输入到计算模块;在计算模块中,采用了五种具体技术对低频微振动进行滤除、提取自身时变姿态和基于四元数理论进行相邻帧之间的平滑处理,能够有效地提升动态视觉测量与检测的输出鲁棒性与准确性,优化视频流;最后,输出层将画面连接在人机交互显示屏,显示优化后的测量数据与重建视频流信息,不仅在视觉质量上得到提升,还能在动态物体跟踪、姿态估计等应用中提供更准确的实时反馈。
南京工业大学 2021-01-12
二维反铁材料MnPS3中磁振子输运的实验进展
近年来,磁振子电子学在信息计算和信息传输领域表现出了极具价值的应用潜力。磁振子电子学利用以磁振子为载体的电子自旋进动来实现信息处理,有望实现无热量产生、低耗散的信息传输,相比于传统意义上通过操纵电荷来实现信息的处理的微电子学具有无可比拟的巨大优势。磁振子电子学领域的进展很大程度上依赖于能够有效传输磁振子的新材料的发现,而获得长距离的磁振子输运始终是磁振子电子学研究的重中之重。与通常的三维磁性绝缘体(如Yttrium Iron Garnet)相比,二维尺度下的磁振子被理论预言有很多的新颖物理效应,例如自旋能斯特效应,拓扑磁振子,以及外尔磁振子等。 在最新的研究文章中,量子材料科学中心韩伟课题组在二维磁性体系中展开工作并取得了重要进展,观测到了二维反铁磁体系中磁振子的长距离输运。MnPS3晶体是一种层状反铁磁材料,利用机械剥离手段得到了二维的MnPS3薄片。MnPS3薄片上制备了用于测量磁振子输运的非局域器件,器件结构如图A所示。器件左侧Pt电极通过热方法来注入磁振子,右侧Pt电极探测在二维MnPS3中扩散传输的磁振子。在二维反铁磁MnPS3中,实验上观测到了几微米的磁振子扩散长度。并且从图B中可以看出,随着注入端和探测端距离的增加,探测到的非局域信号表现出e指数衰减的形式,跟一维漂移扩散模型的理论模型一致。在此基础上,他们还系统研究了MnPS3厚度对磁振子弛豫性质的影响。随着MnPS3厚度从40nm降低至8nm,磁振子弛豫长度由4μm减小到1μm(图C),这可能是由较薄的MnPS3中较强的表面杂质散射效应导致的。 该文章中的结果具有重要的学术价值:二维材料中的磁振子输运实现为二维磁性材料在磁振子电子学的应用与发展奠定了基础,也有望推动磁振子在量子尺度下的新颖量子物理性质研究。图:二维反铁磁体系中磁振子输运研究。(A)二维反铁磁MnPS3中的磁振子输运测量结构示意图。(B)自旋信号R_NL^*随电极间距的依赖关系,与理论预言的e指数衰减吻合。(C)磁振子弛豫长度随MnPS3厚度的依赖关系。 该工作于2019年2月7日在线发表于物理学术期刊Physical Review X上(Phys. Rev. X 9, 011026 (2019) )。 DOI: https://doi.org/10.1103/PhysRevX.9.011026。该工作由韩伟研究员设计和指导完成,北京大学量子材料科学中心2015级博士生邢文宇为文章第一作者,物理学院2015级本科生邱露颐为第二作者(今年9月份将去哈佛大学读博士),韩伟研究员为文章通讯作者。本工作的顺利完成得到了量子材料科学中心贾爽教授和谢心澄院士的合作帮助,以及国家重大科学研究计划、国家自然科学基金、中国科学院战略性先导科技专项的支持。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 24 25 26
  • ...
  • 34 35 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1