高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高速铁路钢轨等重大设施及新型材料无损检测技术
在巡检条件下,实现多物理量融合的钢轨病害动态检测技术。采用复合电磁技术检测材料表面和内部的宏观伤损;采用巴克豪森技术测量缺陷产生前的残余应力、材料状态改变、表面早期伤损;应用相控阵超声技术检测钢轨内部缺陷,并实现焊缝的精确定位及智能化全尺寸高效检测。实现覆盖诸如钢轨(含焊缝)等重大设施及新型材料全尺寸、全寿命周期的健康状态综合检测。高速铁路损伤检测:实现80-350km/h的高巡检速度下对轨道不同阶段损伤的检测,提高轨道安全性;智能制造质量检测:实现新型加工、增材制造中加工质量无损检测,提高智能制造的加工水平;结构智能健康监控:实现钢轨、桥隧、航空航天设施关键部位故障状态监控,提高重大设施寿命。技术优势巡检试验转台的速度提升至350km/h,填补了国内350km/h速度等级巡检试验转台的空白。首次在国内研究了350km/h高速及不饱和状态下铁磁性材料动态磁化过程机理。采用电磁、涡流、图像等无损检测核心关键技术,研究各种材料的伤损缺陷对检测信号的影响,克服使用环境、高速运动对检测系统的影响,在高速及重载铁路应用条件下,对服役钢轨表面、亚表面以及一定深度的裂纹缺陷损伤进行快速巡检,构建高速钢轨裂纹巡检设备,实现对铁路钢轨裂纹缺陷形貌参数等相关数据信息的快速获取、损伤程度判别,并进行故障预警和寿命评估。研究基于复合电磁效应、超声波、激光、图像融合的钢轨巡检及实时分析技术,实现病害特征识别与缺陷重构。通过分析铁磁性材料磁化过程,抑制巡检中检测探头的振动、提离效应、材料属性以及使用环境对钢轨表面检测结果的影响;基于多物理量数据的融合分析,精确识别钢轨缺陷产生前的残余应力、早期伤损等多种病害。通过使用超声技术实现焊缝精确定位及全断面相控阵高效检测。应用范围:(1)获得国家科技部重大科学仪器开发专项重大科学仪器开发专项“在役钢轨缺陷综合检测监测设备开发与应用”、国家自然科学基金委员重大科学仪器开发专项“钢轨接触疲劳及裂纹多物理高速巡检监测技术攻关”铁路总公司重大课题“高铁钢轨浅表层缺陷快速检测关键技术研究及装备研制”等项目支持。(2)作为关键核心设备应用于中国铁路总公司新一代国产大型高速钢轨探伤车GTC-80,累计巡检里程已达1万公里以上。发现各类型缺陷,如裂纹,剥离,磨损等400多例,通过了铁路总公司的关键技术鉴定,实现进口重大装备替代。(3)30km/h的双轨电动探伤机器人,集成环境感知、智能巡检、大数据处理与无线传输等功能,实现无人监控下的长距离自主运行,用于城市轨道巡检,已应用于南京地铁、西安地铁等。(4)智能制造质量检测技术应用于宝武集团宝日冷轧钢板厂(世界最大冷轧钢板生产线)钢板加工性能在线自动检测。(5)结构智能健康监控技术应用于京沪高铁CRTS-Ⅱ型轨道板健康监控(上海铁路局科技进步一等奖)、金温高铁沿线光纤监测(全国首例)、贵广客专K75+431双线特大桥沉降监测、芜湖地铁1、2号线安全监控系统;(6)挑战杯全国大学生课外学术科技作品竞赛特等奖,创青春全国大学生创业大赛金奖,第一届中俄工业创新大赛二等奖。
南京航空航天大学 2021-04-10
全截面非接触燃煤电站一次风粉静电检测技术
燃煤电站锅炉一次风粉传感器为全截面环状非接触式结构,其基本原理是利用燃煤电站制粉系统中煤粉颗粒物的摩擦起电原理,结合先进的测量模型实现煤粉流速、浓度及流量进行在线实时测量,误差优于5%。 主要技术特点: 全截面结构,其内径与一次风管相同,不存在盲区,保证了测量结果的准确性和可靠性。 非接触式,无磨损,使用寿命长。 采用被动式静电检测原理,传感器只对移动煤粉敏感,测量系统免维护。传感器安装在近燃烧器端,真实反映了入炉的各一次风管内煤粉浓度和流速分配状态。 结合风粉调节手段,可优化燃烧,减低污染物排放,防止锅炉结焦、腐蚀、水冷壁爆管等,对锅炉安全经济环保运行具有重要意义。
东南大学 2021-04-13
全截面非接触燃煤电站一次风粉静电检测技术
成果介绍燃煤电站锅炉一次风粉传感器为全截面环状非接触式结构,其基本原理是利用燃煤电站制粉系统中煤粉颗粒物的摩擦起电原理,结合先进的测量模型实现煤粉流速、浓度及流量进行在线实时测量,误差优于5[%]。技术创新点及参数全截面结构,其内径与一次风管相同,不存在盲区,保证了测量结果的准确性和可靠性。非接触式,无磨损,使用寿命长。市场前景结合风粉调节手段,可优化燃烧,减低污染物排放,防止锅炉结焦、腐蚀、水冷壁爆管等,对锅炉安全经济环保运行具有重要意义。向大型火力发电厂,制备电厂推广并运营。
东南大学 2021-04-13
重大环境污染事件特征污染物现场 快速检测技术系统
近年来,我国突发性重大环境污染事件频繁发生,对国民健康、生态环境产生了严重影响。从我国当前重大环境污染事件发生的实际状况出发,研究开发重大环境污染事件特征污染物现场快速检测技术系统,是提升我国环境保护技术水平,推进环境友好型社会建设的迫切要求。特征污染物现场快速检测作为应对突发性环境污染事件的前提,首先要求判断污染物的种类,利用快速检测手段给出定性、半定量和定量的检测结果,确认污染事件的危害程度和污染范围等。开发一套功能完善、便携、快速的特征污染物现场检测技术系统,对于现场决策、减少污染危害程度等具有极其重要的意义。本课题采用纳米生物技术、电化学或光化学传感技术和信息技术,并将其有机组合,建立环境污染事件的现场快速检测技术系统,最终形成具有自主知识产权的环境污染物现场快速检测技术和仪器装备,为国家环境安全和人民健康提供保障。
华东理工大学 2021-04-13
食品中多种农药残留生物识别及快速检测关键技术与应用
创新性地开发出了能同时识别有机磷、氨基甲酸酯及拟除虫菊酯类农药残留的生物酶,并筛选了相应的检测体系,从而解决了目前使用的农药残留速测方法只能检测有机磷和氨基甲酸酯类农药的问题;在此基础上,利用固定化生物敏感元件分别与不同的检测换能器紧密配合构建了系列生物传感器型农药残留速测仪,实现了农药残留检测的自动化和通用化。 
上海理工大学 2021-01-12
全截面非接触燃煤电站一次风粉静电检测技术
燃煤电站锅炉一次风粉传感器为全截面环状非接触式结构,其基本原理是利用燃煤电站制粉系统中煤粉颗粒物的摩擦起电原理,结合先进的测量模型实现煤粉流速、浓度及流量进行在线实时测量,误差优于5[%]。主要技术特点:全截面结构,不存在盲区,保证了测量的准确性和可靠性;非接触式,无磨损,使用寿命长;采用被动式静电检测原理,传感器只对移动煤粉敏感,测量系统免维护;传感器安装在近燃烧器端,真实反映了入炉的各一次风管内煤粉浓度和流速分配状态;结合风粉调节手段,可优化燃烧,减低污染物排放,对锅炉安全经济环保运行具有重要意义。
东南大学 2021-04-13
新型脱硫石膏-粉煤灰复合水泥土及注浆材料关键技术
新型脱硫石膏复合水泥土及注浆材料分别应用于深基坑工程中的止水帷幕,坡道加固及地基加固中的最优配合比。水泥掺量 14%、粉煤灰掺量 3%、脱硫石膏掺量 2%、水灰比 0.4,即用脱硫石膏和粉煤灰取代 26.3%的水泥掺量,可以较好的改善土体的力学性能,更能够很大程度地提高土体的抗渗性,达到止水效果,大量应用于水泥土搅拌桩、双液注浆型止水帷幕的施工当中。水泥掺量 8%、粉煤灰掺量 3%、脱硫石膏掺量 3%、水灰比 0.4,即用脱硫石膏和粉煤灰取代 42.8%的水泥掺量,造价低廉,可以提高土体的强度,适当提高土体的抗渗性能,可以大量应用在临时性土体加固工程中,比如坡道加工及基坑坑底土体加固当中,改善土体力学性能,保证施工安全和施工进度,以节约成本。已经申请专利:一种利用脱硫石膏的新型土体固化剂 201410021878.3。
安徽理工大学 2021-04-11
金属层状复合板带短流程低成本规模化生产技术
北科大独立开发了金属层状复合板带轧制复合成形新技术,比传统爆炸复合、热轧复合和冷轧复合技术的流程短、成本低且产品的性能优异,可广泛用于钛/钢、铜/钢、铝/钢、钢/钢、镍/钢、镁/钢、铝/铜、钛/铜、镍/铜、铝/铝、铝/钛、镁/铝等各种异种金属双层或多层复合板带的生产,产品在海洋工程、汽车交通、电力建筑、石油化工、信息能源、国防军工和日常生活等领域用途广阔。
北京科技大学 2021-02-01
稀土氧化物弥散强化铜基复合材料的制备技术及应用
开发了短流程技术制备纳米稀土氧化物弥散铜基复合材料,具有高强度、高电导率、高热导率、高耐磨性等优良特性,解决了此类材料难以制得全致密大型零件的难题,拓展了其应用领域。发明了此类复合材料块体和粉体的制备技术和专门的装备。 稀土氧化物弥散铜基复合材料制备新技术在企业开始推广应用,可显著提高制动摩擦闸片及金刚石刀头的高温强度和摩擦磨损性能,可大幅改善铁基粉末冶金零件的表面耐磨性,具有广阔市场前景和应用价值。
山东科技大学 2021-04-22
金属层状复合板带短流程低成本规模化生产技术
北科大独立开发了金属层状复合板带轧制复合成形新技术,比传统爆炸复合、热轧复合和冷轧复合技术的流程短、成本低且产品的性能优异,可广泛用于钛/钢、铜/钢、铝/钢、钢/钢、镍/钢、镁/钢、铝/铜、钛/铜、镍/铜、铝/铝、铝/钛、镁/铝等各种异种金属双层或多层复合板带的生产,产品在海洋工程、汽车交通、电力建筑、石油化工、信息能源、国防军工和日常生活等领域用途广阔。
北京科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 33 34 35
  • ...
  • 873 874 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1