高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
湿度计
宁波华茂文教股份有限公司 2021-08-23
体温计
宁波华茂文教股份有限公司 2021-08-23
高度计
宁波华茂文教股份有限公司 2021-08-23
21005摩擦计
宁波华茂文教股份有限公司 2021-08-23
测力计
产品详细介绍条形盒测力计,圆通测力计 ,平板测力计,演示测力计等。
洛阳金澜教学仪器设备有限公司 2021-08-23
21005 摩擦计
产品详细介绍 1. 产品由摩擦板和摩擦块组成; 2. 擦板为500mm×50mm×10mm的木板,平面变形不大于1mm,摩擦面及其背面不涂漆; 3.摩擦板和摩擦块均由经过脱脂、干燥处理,几何变形小、不易断裂、质地坚韧、细滑的优质木料制成,摩擦面无断、裂、节; 4.产品可做摩擦力与接触面所承受的压力有关、摩擦力与接触面的粗糙程度有关等实验。
郑州利生科教设备有限公司 2021-08-23
一种自适应的协作多点传输方法
本发明提出一种自适应的协作多点传输方法,具体为:本小区基站获取自身与本小区指定用户间的下行信道增益,并分别获取本小区的各个相邻干扰小区基站与本小区指定用户间的下行信道增益;在相邻干扰小区基站中,按照其各自与指定用户间的下行信道增益相对本小区基站与用户间的下行信道增益越大则干扰越大的原则,选出强干扰小区基站;若不存在强干扰小区基站,则本小区基站采用协作调度模式向本小区指定用户传送数据,否则,本小区基站与强干扰基站采用联合传输模式向本小区指定用户传送数据。本发明对小区间干扰的抑制能力强,优化了小区边缘用户的通信性能,并且基站间仅需交互少量信息,提高了系统资源的利用率和系统的吞吐量。
华中科技大学 2021-04-11
测量电子极小位移的新方法
 随着激光技术的不断发展,超快超强激光可以在飞秒的时间尺度(1飞秒=10-15 秒)内作用于电子使电子产生约0.1纳米(1纳米=10-9米)量级的空间位移。利用超短超强激光脉冲,人们将可以实现分子尺度下的电子位置的超快及超高精度的位置控制。然而现有的探测技术,却无法实现对电子如此微小位移的精确测量。隧道扫描显微镜(STM)利用的电子量子隧穿信号能以0.1纳米的横向和0.01纳米的纵向分辨率对静止的原子进行成像,却无法对运动中的电子进行成像。光电子显微镜(PEEM)成像系统虽然可以测量运动电子的位置,但是其最好的分辨率仅能达到约3纳米,无法在0.1纳米的尺度进行位移测量。日前,该团队利用强场电离中的时间双缝干涉图样,提出对电子在激光脉冲下的微小位移进行了测量的新方案,该方案的分辨率可达0.01纳米。为了测量电子在超短脉冲作用下的位移,他们把导致电子位移的超短脉冲置于两束较长反向旋转的圆偏振光之间。两束反旋向的圆偏振光先后分别电离电子,构成时间上的电子波包双缝干涉,这在电子动量谱中产生涡旋结构。在没有中间的超短脉冲时,该涡旋结构角向是均匀分布的。当中间加入了一束任意的被测超短脉冲,它将作用于前一圆偏光电离的电子使之产生微小位移,这个微小位移使得电子波包获得一个额外相位,从而导致先后两个电子波包的干涉结构在角方向产生了非均匀性。他们提出通过测量这个非均匀的角向分布,可以准确地提取出电子在超短脉冲作用下产生的亚纳米量级的微小位移。他们的方案对激光的焦斑效应以及两束圆偏振光的相位抖动具有很好的抗干扰能力。该理论方案近期以“Proposal for measuring electron displacement induced by a short laser pulse”为题在线发表在《物理评论快报》上【Phys. Rev. Lett. 122, 053201, (2019)】,光学所的博士生肖相如为第一作者、彭良友教授为通讯作者。左图:新方案示意图;右图:测量方案给出的理论预测结果。 研究团队近期还与吉林大学丁大军教授领导的研究组紧密合作,理论提出并在实验上实现了对椭圆偏振强激光椭偏率的原位测量新方案。他们利用两束其它参数相同而旋向相反的椭偏光来电离惰性气体氙(Xe)原子,强场电离得到的电子阈上电离谱和单电离离子总产率谱敏感地依赖于两束光脉冲之间的延时。这些能谱和产率随延时的周期性调制,能够准确反映一个光学周期之中椭圆偏振光的电场强度的最小和最大值间的比值,因此可以用来准确提取每一束椭偏光的椭偏率。研究表明,这一椭偏率测量方案在很大的激光参数范围内普遍适用,这一工作在准确表征超快强激光场的性质方面迈出了重要一步,将对强场物理研究中精细操控原子分子内的超快过程起到重要推动作用。该项成果以“Accurate in situ Measurement of Ellipticity Based on Subcycle Ionization Dynamics” 为题,于2019年1月9日发表在《物理评论快报》上【Phys. Rev. Lett. 122, 013203 (2019)】,吉林大学原子与分子物理研究所的王春成副教授、博士研究生李孝开、北大博士生肖相如为论文共同第一作者,北京大学彭良友教授、吉林大学丁大军教授为该论文的通讯作者。 这些研究工作得到了国家自然科学基金委、科技部、人工微结构和介观物理国家重点实验室、北京量子信息科学研究院、极端光学协同创新中心等的重要支持。 两篇论文的原文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.053201https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.013203
北京大学 2021-04-11
一种微位移驱动开关阀
本实用新型公开了一种微位移驱动开关阀,包括微位移驱动器、微位移放大机构、开关阀阀芯组件和阀体基座;微位移放大机构采用由三个滚珠与两个三角斜面组合的三角放大原理对微位移驱动器输出的微位移进行放大;开关阀阀芯组件采用上下阀芯等径分离结构平衡液压力及方便阀芯的装配;阀体基座将微位移驱动器安装空间、微位移放大机构安装空间、开关阀阀芯组件安装空间整合为一体。本实用新型微位移放大器可将位移从微米级放大为毫米级,其结构简结,易于实现;为减少驱动的阻力,开关阀芯采用等径分离结构,作用于阀芯轴向的液压力大幅减少,且便于装配;阀体基座将微位移驱动部分、位移放大部分、开关阀套部分设计为一体,结构紧凑。
浙江大学 2021-04-13
超精密电涡流位移传感器
成果创新点 1.温飘、分辨率、稳定性等指标具有国际领先水平; 2.温度自补偿技术、信号源漂移自矫正技术、噪声抑 制技术等是主要创新点。 技术成熟度 小试中试阶段 市场前景 可用在大型天文望远镜中作为边缘传感器;可以用在 精密车床、电子显微镜、原子力显微镜、共焦显微镜等中。 转化计划 预期转化方式:自主转化寻求投资,已于天使基金接 触。
中国科学技术大学 2021-04-14
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 288 289 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1