高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
多稳态磁性MOF材料研究
提出引入活性客体来调控金属有机框架(MOF)体系自旋转换性能的策略,并成功地通过特定活性客体的可逆化学变化得到验证;通过引入双吡啶三氮唑阴离子配体设计组装出自旋转换温度创纪录的自旋交叉材料该研究团队最近通过精心设计,将氨基官能团引入到霍夫曼型MOF材料中,合成了首例具有HS0.0LS1.0↔HS0.25LS0.75↔HS0.5LS0.5↔HS0.75LS0.25↔HS1.0LS0.0五种自旋状态的四步自旋转变MOF材料,并通过磁性、差示扫描量热法和单晶衍射法进行了表征确认。对于HS0.25LS0.75自旋态,我们从结构上捕捉到首例具有LS-LS-LS-HS三维有序交替排列特征的磁结构。更加令人惊奇的是,通过对主客体间超分子作用的调控可以实现四步、两步和一步自旋交叉性质之间的可逆转变,为设计具有多步自旋转变的多稳态磁性材料提供了新的思路。
中山大学 2021-04-13
超薄二维MOF纳米材料
近年来,除石墨烯以外的超薄二维纳米材料的研究引起了极大的关注。其中,二维MOF纳米材料由于其可调的结构和功能、高度有序的孔洞排列、及全方位暴露的活性位点,在探测、催化、吸附/分离等方面显示了巨大的应用潜力。本研究通过溶剂辅助的超声剥离技术,成功制备了单层二维纳米片[Co(CNS)2 (pyz)2]n (pyz = pyrazine),在此基础上,开发了基于超薄二维纳米材料的检测试纸,借助智能手机的览色APP扫描技术,实现了一种便携式、原位可视化检测策略。 这一策略在爆炸物探测、有毒分子检测、分子探针,反应过程追踪等方面显示了巨大的实际应用潜力。
东南大学 2021-04-11
单双光子路径染料@MOF白光材料
同时利用紫外光激发的单光子过程和近红外光激发的双光子过程,成功获得了双路径光子转换的染料@MOF白光材料。该MOF结构设计中的四苯乙烯骨架配体和所吸附的有机染料分子,均同时具有单光子吸收(OPA)和双光子吸收(TPA)激发荧光的特性。经过对材料组成、激发波长、双光子吸收截面等诸多因素的精准调控,最终成功获得了不同含量的RhB+@LIFM-WZ-6、BR-2+@LIFM-WZ-6和APFG+@LIFM-WZ-6的染料@MOF白光材料体系,而后分别在365 nm紫外光和730~800 nm近红外光的激发下,经由单光子路径和双光子路径过程,成功实现了能量下转换和上转换的白光发射。上述研究将不同路径的光子转换机制成功运用于白光发射材料的设计,并为光化学和光物理的其他相关领域提供了新的研究思路。
中山大学 2021-04-13
新型稀土磁性蓄冷材料
磁性蓄冷材料是在90年代初被发现的。这些材料用于制冷机中后,使得商用制冷机的温度可达2K,效率有了突破性提高(以往这种制冷机中使用的蓄冷材料只有铅,但是因为铅的比热容在15K以下急剧下降,使得小型制冷机在10K温度以下制冷效率几乎为零,商用制冷机的最低制冷温度在8K左右)。使用磁性蓄冷材料的最大特点在于不需要重新建立一个制冷体系,只要将商品化的气体制冷机中的蓄冷材料换成磁性蓄冷材料。 Er-Ni系列磁性蓄冷材料的指标: 比热容峰值:5K~20K; 在10K以下的比热容峰值为0.35~0.81J/cm3.K; 4K到20K的比热容积分∫CdT是5.5J/cm3 新型稀土磁性蓄冷材料已经用于小型回热式低温气体制冷机产品中。这种制冷机的制冷温度在4.2K~20K,一般用于医用核磁共振成象仪、磁悬浮列车和超导发电机中冷却其大型超导磁铁、用于量子干涉仪(SQUID)、射频天文望远镜的传感器探头和军用红外探测器中以提高其灵敏度,并用于低温冷疑高真空泵中等等。使用了这种新型稀土磁性蓄冷材料替代传统蓄冷材料以后,可以使医用核磁共振成象仪等不用灌注液氦,每年仅每台医用核磁共振成象仪就可以节约16万人民币。
北京科技大学 2021-04-11
新型稀土磁性蓄冷材料
新型稀土磁性蓄冷材料是一种高熵密度磁性材料(high entropy magnetic materials),高熵密度磁性材料这一概念是磁性材料用于制冷工程时提出的。它的特点是材料的磁熵发生变化时会出现大的吸热与放热效应,可以应用于制冷技术中。利用磁性材料在经历磁相变时发生的磁熵变化,可以将高熵密度磁性材料作为磁蓄冷材料(magnetic regenerator material),用于小型回热式低温气体制冷机中。 这种制冷机的制冷温度在4.2K~20K,一般用在高技术领域,例如可用于医用核磁共振成象仪、磁悬浮列车和超导发电机中冷却其大型超导磁铁、用于量子干涉仪(SQUID)、射频天文望远镜的传感器探头和军用红外探测器中以提高其灵敏度,也可以用于低温冷疑高真空泵中等等。以往这种制冷机中使用的蓄冷材料只有铅。由于铅的比热容在15K以下急剧下降,使得小型制冷机在10K温度以下制冷效率几乎为零,制冷温度难以低于8K。要得到低于8K的制冷温度,只得附加效率极低的J-T回路。为了提高低温制冷机的制冷效率,在过去的几十年中,人们都在努力寻找在20K以下具有高比热容的材料。具有实用价值的Er—Ni系列磁性蓄冷材料是在90年代初被发现的。这些材料用于制冷机中后,使制冷机的效率有了突破性提高。 磁性蓄冷材料的最大特点是不需要重新建立一个制冷体系,只要将商品化的气体制冷机中的蓄冷材料换成磁性蓄冷材料,就可大大提高制冷机效果。因此磁蓄冷材料正在取代原来的蓄冷材料金属铅。而且由于磁性蓄冷材料的出现,推动了低温制冷机的发展。现在,不用灌液氦,用制冷机带动的医用核磁共振成象仪和超导磁体已经商品化。在这些新设备中,都必须使用磁蓄冷材料。
北京科技大学 2021-04-11
隔热材料高温热导率非稳态法测试系统
热导率、热扩散率和比热是物质非常重要的热物理性能参数,也是进行绝热设计和热分析计算不可或缺的关键参数。基于非稳态平面热源法的高温可变气压热导率测试系统,可为纳米超级隔热材料、航空航天热防护材料、能源及建筑保温材料的制备和应用相关部门提供可靠的热导率和热扩散率测试手段。测试系统主要主要由平面热源、高温环境箱及数据采集系统等组成,如图 1所示,给平面热源通以一定形式(阶跃或脉冲式)的加热电流 I(t),同时用热电偶测量距热源为 x 的位置处材料内部的温度变化 T(x,t),根据热源-试样测量系统的传热数学模型及其非稳态导热方程的解析解,通过基于最小二乘拟合的参数估计算法,可以同时确定出设定温度和气压条件下被测材料试样的热导率、热扩散率和体积热容三个热物性参数。对于阶跃式加热,温度响应公式为:图1热导率测试范围:0.005~5 W/(m.K) ;测试精度:5%;温度范围:RT~1200℃;气压范围:10~105Pa 。
北京科技大学 2021-04-13
NFC射频磁性基板材料与应用
NFC射频磁性基板材料是一种高磁导率低损耗的超薄磁性基板材料,该材料是移动终端集成NFC系统的关键支撑,但材料制备技术长期掌握在国外公司。国家工程中心经过技术攻关研制成功低成本磁性基板材料,打破国外技术垄断。
电子科技大学 2021-04-10
一种具有丰富磁性质的磁性材料及其制备方法
本发明公开了一种具有丰富磁性质的磁性材料,其分子式为SmCo1-xFexAsO,0<x<0.3,具有ZrCuSiAs型晶体结构。该磁性材料具有丰富的磁性质,0<x<0.2时,随着温度的降低,先后发生了铁磁和反铁磁转变,随掺Fe量的增加,铁磁转变温度增加,而反铁磁转变温度下降,而且在反铁磁转变温度以下,在磁化强度随磁场的变化曲线中,发生了变磁性转变;0.2≤x<0.3时,反铁磁性被完全抑制,成为一种铁磁性材料,而且铁磁转变温度接近室温,有利于实际应用。该材料性能稳定,制备简单。
西南交通大学 2016-07-04
纳米晶Nd-Fe-B磁性材料
揭示了热变形纳米晶Nd-Fe-B磁体的晶体取向-长大机制;阐明了晶界组织调控对磁硬化的作用机理;相关研究对节约Dy、Tb等稀贵重稀土的使用具有重要意义。热变形Nd-Fe-B磁体的最大磁能积高达411kj/m3(N50);利用晶界扩散技术可获得高矫顽力(2.0T)和最大磁能积(322kJ/m3,N40)兼备的热变形纳米晶Nd-Fe-B磁体;发展了一种同时改善变形磁体矫顽力和剩磁的新工艺。
上海交通大学 2023-05-09
功能磁性纳米材料的构建及诊疗应用基础
"该成果获2018年度高等学校科学研究优秀成果奖(科学技术)自然科学类一等奖,系统研究了磁性纳米材料的控制制备及表面修饰,研究成果发表在Coll. Surf. A与Nanoscale Res. Lett.,共计被SCI正面他引260篇次。研制出10L纳米g-Fe2O3弛豫率国家标准物质(GBW(E)130387),教育部组织的科技成果鉴定认为该标准物质填补了国内外空白,对磁共振成像造影剂研制、生产及临床应用具有重要意义。提出了一种交变磁场诱导磁性纳米颗粒组装的新机制,制备得到具有各向异性磁热效应的水凝胶,结果发表在Angew. Chem. Int. Ed.、Adv. Mater.等专业期刊上,被同行认为“交变磁场组装磁性纳米颗粒是过去十几年来除了静磁场控制组装以外首次提出的新的组装方式和机制”,“首次制备具有各向异性磁热效应的磁性水凝胶”,“在未来的临床热疗中具有重要应用前景”。
东南大学 2021-04-10
1 2 3 4 5 6
  • ...
  • 271 272 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1