高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
有限数据下疲劳可靠性设计分析方法与试验研究
2003年获四川省科技进步二等奖(参加)。
西南交通大学 2016-06-27
低温空间温度场数据可视化与模拟分析系统项目
项目简介 “低温空间温度场数据可视化与模拟分析系统”项目由泰州市沪江特种设备有限公 司委托开展。运用空间温度在线监测和计算机数据处理及可视化技术,实时分析空间的 温度场变化,实现空间温度场的优化,达到节能运行的目的。 系统根据空间需要,布置多层、多处测点,依靠传感器及相关仪表,通过 485 通信 方式实现本地数据与计算机之间的传输。自主研发的数据采集与处理程序实时监测空间 各处的温度分布,并以三维彩色视图显示,可直观观测空间的温度场的动态变化特征, 指
江苏大学 2021-04-14
时空数据预测与识别技术
01. 成果简介 随着移动计算、传感器网络和科学观测设备等新技术在经济社会各领域的广泛应用,特别是监控、遥感、定位等技术的崛起,人们获得了海量的时空数据。时空数据分布于连续空间,并且随着时间动态变化,具有十分复杂的模式规律。例如,卫星遥感数据和雷达回波数据是广泛应用于气象观测和军事侦察的时空数据,在连续的卫星扫描或雷达观测过程中,形成时间轴上的一系列遥感图像或回波影像,反映三维地理空间中某种观测物理量的变化规律。视频监控、医学影像、气象预报、环境监测等很多应用领域都涉及时空数据预测和识别任务,在问题求解过程中需要同时考察时间和空间两方面因素,存在时间上的非平稳性和空间上的高维相关性两大技术难题。 本成果创新大数据深度学习技术,从复杂、海量、高维、非平稳的时空数据中识别重要的时空模式,挖掘在时间和空间上的变化规律,并对未来的时空演变趋势进行预测,形成了时空数据预测和识别的深度学习技术(如图1所示)。具体包括:·        提出卷积结构与循环结构深度融合的统一建模方法,学习高维度、非线性时空特征表示,挖掘空间关联结构与时间动态信息;·        提出时空记忆单元和回忆机制,对时空非线性、非平稳性变化进行预测学习;·        提出时空数据的迁移学习技术,降低时空分布差异,实现知识的跨时空迁移。 该技术尤其擅长捕捉高维度、非平稳时空数据的非线性变化规律,例如多物体对象在空间和时间上的“产生、消亡、运动、形变“等复杂时空数据场景。与同类技术相比,运行时间短,预测和识别精度高,在国际上处于整体先进、部分领先的水平。  图1. 用于时空数据预测和识别的循环神经网络架构及其时空记忆单元图2. 本成果技术(时空数据预测与识别)在北京交通流量预测任务上的效果02. 应用前景 该技术成熟度高,部分成果已经以线上系统的形态成功应用于中国气象部门强对流天气预报业务中,与国内现有极端天气预报业务系统相比,该技术将雷达回波外推预报准确率平均提高了45%,其中高强度雷达回波外推预报准确率提高了353%,处于国际先进水平。气象灾害中70%以上是由雷暴大风、下击暴流等强对流天气导致,致死人数占自然灾害死亡人数的93%,因此该技术在避免人员伤亡、实现财产保全、减少农业损失方面产生显著的社会经济效益。同时,该技术还可广泛应用于时空数据的预测和识别场景,在关系国计民生的气象、环保、交通等领域可以发挥重要作用,应用前景广阔。例如,采用该技术可实现未来交通流量时空分布的精准预测(如图2)。该项成果还入选了2018年首届数字中国建设峰会,为杭州G20峰会、厦门金砖会晤、中国国际进口博览会等提供了精准预报支持,获得2018年教育部技术发明一等奖和2018年中国气象学会科技进步奖一等奖。03. 知识产权 本项成果已获得发明专利授权6项。04. 团队介绍 本成果团队长期研究大数据管理与分析技术,包括分布式数据存储与查询、深度学习与迁移学习、业务过程挖掘、数据质量治理等方向。团队负责人为王建民教授、软件学院院长,机器学习小组组长为龙明盛副教授。团队在本领域发表国际学术论文100余篇,申请专利100余项,授权专利60余项。相关成果获2018年教育部技术发明一等奖、2018年中国气象学会科技进步一等奖、2014年国家科技进步二等奖、2013年中国电子学会科技进步一等奖、2012年教育部科技进步一等奖等奖励。05. 合作方式 技术许可 / 软件服务。
清华大学 2021-04-13
多维有序数据管理技术
01. 成果简介 非结构化数据是没有显式数据结构约束的非关系型数据,包括时间序列、图像、音视频等,其管理与分析技术成为国际信息领域战略竞争焦点。许多实际应用中,非结构化数据不仅总的体量大,而且数量也极为巨大。例如,我国气象预报业务每天接收到的气象数据文件达数亿非结构化气象小文件。此外,这些文件存在大量业务语义属性,这些属性形成了描述一个数据的多种维度。 针对海量非结构化数据的管理需求,清华大学软件学院提出了多维文件空间模型,并基于此模型突破了一系列非结构化数据核心技术,包括:l  非结构化数据到多维空间模型的映射方法;l  多维文件空间模型的分布式物理实现方法;l  分布式存储的副本控制方法。 该技术通过对非结构化数据的属性维度进行分类,将非结构化数据建模成多维文件空间模型,并对文件集合上的各种操作进行定义。此外,通过细粒度计算磁盘IO代价、网络代价、副本代价、CPU代价、数据分区代价,得到指定工作负载下的最优物理存储实现,进而通过排队论等方法对副本的一致性进行控制,实现满足用户SLA(服务等级保证)的柔性事务。  图1. 基于多维文件空间的最优非结构化数据存储方法示意图  相比现有对象存储等技术,该项技术可以实现更加灵活的数据访问。同时,该项技术能够建立多维文件空间到分布式物理存储的最优映射机制,保证非结构化数据总访问代价最小。相比于现有的分布式文件系统,该项技术可以确保使用少量内存管理数以亿计的海量非结构化小文件,而现有多数分布式文件系统在遇到海量文件管理时往往会出现内存爆炸问题。02. 应用前景 本成果技术可广泛用于各种类型尤其是多维度属性的非结构化数据管理。目前已经被成功应用于中国气象局和全国31个省或直辖市气象局,以及石油、风电等多家工业企业。该项成果还入选了2016国家十二五科技创新成就展和2018首届数字中国建设峰会,并作为贡献之一获得2018年教育部技术发明一等奖和中国气象学会科技进步奖一等奖。03. 知识产权 本项成果已获得发明专利授权13项。04. 团队介绍 本成果团队长期研究大数据管理与分析技术,包括分布式数据存储与查询、数据质量、深度学习与迁移学习、业务过程挖掘等方向。团队课题负责人为王建民教授、博士生导师。团队在本领域发表国际学术论文100余篇,申请专利100余项,授权专利60余项。相关成果获2018年教育部技术发明一等奖、2018年气象学会科技进步一等奖、2014年国家科技进步二等奖、2013年中国电子学会科技进步一等奖。05. 合作方式 技术许可 / 软件服务。06. 联系方式 邮箱:liuyi2017@tsinghua.edu.cn 团队电话:010-62786972;13051000520 团队邮箱:huangxdong@tsinghua.edu.cn
清华大学 2021-04-13
高性能XMLXML数据处理技术
北京工业大学 2021-04-14
时序数据水印系列算法技术
1. 痛点问题 工业时序数据具有应用领域广、数据规模大、经济价值高的特点,蕴含的巨大商业价值,因而其安全性受到不法分子采用黑客攻击等技术手段以及雇佣商业间谍等非技术手段的威胁。数据所有者通常会采用前效方法对数据库中的数据加以保护,但是这些方法只能有效防止外部人员进行非法盗窃,对于内部人员盗窃等途径并不能有效遏制。数字水印是解决数据在传播过程中安全问题的一个主流分支,通常的数字水印采用分组多数投票方法来提升算法的鲁棒性,但时序数据通常有较多的噪声,高价值数据点相对集中,因而一个未经加权的投票算法可能会因为大范围的噪声干扰而导致水印判定失效。此外,常见时序数字水印算法基于时间戳进行水印嵌入计算,容易受到更改时间戳或频率变换的攻击,一旦时间戳序列大幅度改变,水印提取算法将受到很大影响,很可能导致水印提取完全失效。 2. 解决方案 工业物联网数据是工业大数据规模迅速扩张的主要来源。各类物联网传感器以极高的频率采集其所在设备的工作状态数据,通常为一系列包含数据产生时间戳(Timestamp)和采集数据(Data)形式为(Timestamp, Data) 的元组序列,称为时间序列。工业时序数据具有应用领域广、数据规模大、经济价值高的特点,蕴含的巨大商业价值,因而其安全性受到不法分子采用黑客攻击等技术手段以及雇佣商业间谍等非技术手段的威胁。 数据所有者通常会采用前效方法对数据库中的数据加以保护,包括但不限于:数据加密、用户权限划分等等。但是,这些方法只能有效防止外部人员进行非法盗窃,对于内部人员盗窃等途径并不能有效遏制。数字水印是解决数据在传播过程中安全问题的一个主流分支,常见时序数字水印算法基于时间戳进行水印嵌入计算,容易受到更改时间戳或频率变换的攻击,一旦时间戳序列大幅度改变,水印提取算法将受到很大影响,很可能导致水印提取完全失效。此外,数字水印通常采用分组多数投票方法来提升算法的鲁棒性,但时序数据通常有较多的噪声,高价值数据点相对集中,因而一个未经加权的投票算法可能会因为大范围的噪声干扰而导致水印判定失效。 本项目针对常见的水印失效场景进行了分析,提出了能够有效提示水印鲁棒性的技术,更好的确保数据安全的管理能力。 3.合作需求 在全国范围内工业互联网/工业大数据相关领域寻求应用场景,希望能与能源/装备制造行业的大中型企业开展这方面的合作研究和落地实施;并针对上述企业开展包括二次开发在内的各类实际应用,助力企业降本增效、转型升级。
清华大学 2023-02-14
海鳗(北京)数据技术有限公司
海鳗(北京)数据技术有限公司,是专注于文旅大数据平台型及深度价值挖掘的高科技公司,公司本部设在北京,天津设有平台和数据运维团队,是国家高新技术企业和中关村高新技术企业。 海鳗云是面向智慧旅游大数据典型应用场景推出的SAAS服务平台,基于全景外部数据(互联网内容数据、手机GPS位置数据、银联清算数据、搜索数据等)对旅游目的地运营的各类场景提供大数据解决方案,为政府监管部门、景区等涉旅企业、旅游院校等提供数据驱动的新旅游生态下的行业监管、投资咨询、产品规划、管理提升、服务优化、智能营销等新能力。海鳗云客户已覆盖宁夏文旅厅、青海文旅厅、甘肃文旅厅、文山文旅局等省市级监管机构和泰山、崂山、黄山、青城山、都江堰等著名景区。 海鳗云大力推进旅游大数据的产教融合,用多年积累的旅游大数据产业应用的技术、工具和案例,帮助旅游类本科院校和高职院校构建旅游大数据实训体系,所能提供的服务包括但不限于教学实训平台、教材、课程设计、师资培训等。与北京联合大学、北京工商大学、北京第二外国语学院等保持良好的合作关系。
海鳗(北京)数据技术有限公司 2022-05-24
匿名加密流量分析技术
本技术采用侧信道攻击的基本思路,针对典型/加密匿名通信流量,提出了一种快速、高效的流量识别方法,并在此基础上通过选择合适的网络流特征对识别出的匿名/加密通信流量进行上层应用分类,重点针对HTTP等典型通信流量,设计了基于流量指纹的内容分析方法以推测潜在的通信目标。该技术可用于网络监管、QoS区分服务等领域。
东南大学 2021-04-11
软件分析,测试与演化技术
本成果所属项目获得教育部自然科学二等奖和商业部科技进步奖三等奖。 (1)基于主题模型的软件工程数据建模和分析技术。 (2)基于形式概念分析的修改分析和测试技术。(3)基于自然语言处理的软件数据预处理技术。 (4)个性化的软件开发和维护管理。 (5)自动化的软件数据概要化技术。 (6)基于动态主题模型的软件演化建模技术。 (7)针对具体软件历史代码库的词库自动构建技术。
扬州大学 2021-04-14
基于AI的视频分析技术
目前基于AI的图像分析技术已经日趋完善,在人脸识别、车牌识别等场景的应用越来越广泛,市场竞争也愈发激烈。本成果面向更复杂的场景:视频分析。通过深度网络学习视频数据的时空特性,能够捕捉视频的动态信息并进行自动分析,达到不同应用的目标。目前在较难的视频分析任务—手语翻译上达到较为先进的水平。
中南大学 2023-04-23
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 781 782 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1