高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
CL建筑保温结构体系施工
山东巨能兴业新型材料科技发展有限公司 2021-09-01
多层大跨度正交正放装配式混凝土空腹楼盖及制作方法
本发明公开了一种多层大跨度正交正放装配式混凝土空腹楼盖,包括周边框架(7)以及两个以上的预制空腹网格单元。预制空腹网格单元包括上弦空腹网格模块、下弦空腹网格模块和混凝土剪力键。上弦空腹网格模块包括两根以上的弦杆一和两根以上的弦杆二,下弦空腹网格模块包括两根以上的弦杆三和两根以上的弦杆四。上弦空腹网格模块通过混凝土剪力键固定在下弦空腹网格模块的正上方。本发明还公开了一种多层大跨度正交正放装配式混凝土空腹楼盖的制作方法,本发明提出的预制装配的施工方法,在长度方向Lx与跨度方向Ly之比为1≤Lx/Ly≤1
东南大学 2021-04-14
多层大跨度正交斜放装配式混凝土空腹楼盖及制作方法
本发明公开了一种多层大跨度正交斜放装配式混凝土空腹楼盖及制作方法,包括周边框架(7)以及两个以上的预制空腹网格单元。预制空腹网格单元包括上弦空腹网格模块、下弦空腹网格模块和混凝土剪力键。上弦空腹网格模块包括一根以上的弦杆一和一根以上的弦杆二,下弦空腹网格模块包括一根以上的弦杆三和一根以上的弦杆四。上弦空腹网格模块通过混凝土剪力键固定在下弦空腹网格模块的正上方。本发明还公开了一种多层大跨度正交斜放装配式混凝土空腹楼盖的制作方法,本发明提出的预制装配的施工方法,在长度方向Lx与跨度方向Ly之比Lx/Ly
东南大学 2021-04-14
大空间建筑分层空调负荷计算方法
对于以满足人员活动区舒适性为目的的大空间建筑,常采用分层空调方式达到人员活动区的室内热环境要求。但传统的分层空调负荷计算方法存在着不科学、经验取值依据不足等诸多问题。研究团队经过几年的理论研究和实验研究,基于室内热环境B-G模型的解析解,建立了大空间分层空调负荷在喷嘴送风与下送风两种情况下的负荷计算方法,提出了计算所需的相关线算图。该方法已经在实际大空间建筑中得到验证。
上海理工大学 2021-01-12
一种木结构古建筑防火结构
本实用新型公开了一种木结构古建筑防火结构,涉及木结构古建筑的消防与保护技术领域,包括在楼板层处从外至内依次设有方砖层、干细沙层、结构层和面层,干细沙层铺设在结构层上,干细沙层上铺设方砖层;本实用新型结构简单,制造成本低,外观美观、不破坏古建筑的样貌,并且具有很好的防火能力;从技术上保护木结构建筑不被火灾侵害,同时在不改加强了木结构古建筑的防火安全性能。
安徽建筑大学 2021-01-12
古建筑木结构无损检测技术
北京工业大学 2021-04-14
大空间建筑分层空调冷负荷计算模型研究
基于区域热质平衡理论,建立适合于大空间建筑的分层空调负荷计算模型,进行某大空间建筑夏季工况下的试验测试研究,验证室内垂直温度分布的计算结果,比较同步求解模型计算的分层空调冷负荷和实际大空间建筑空调供冷量,在此基础上,预测分层空调冷负荷在变工况下的变化趋势,计算结果表明实际空调最大供冷量与模型计算结果相差14%,变工况的负荷变化趋势符合实际变化规律。
南京工程学院 2021-01-12
建筑围护结构热工测试仪
建筑能耗占我国当前社会总能耗的1/3左右,且随着建筑总量的增加和居住舒适度的提升呈急剧上扬趋势。我国既有建筑中99%都是高能耗建筑,同时每年新建的约20亿平方米建筑中高能耗建筑占90%以上,建筑节能被认为是缓解经济发展与能源短缺矛盾的有效方式。造成我国建筑能耗高的主要因素是围护结构的保温隔热性能差以及采暖(制冷)系统效率低。围护结构的性能是最根本的因素,它是判定建筑是否节能的重要依据,也是既有建筑节能改造的基础。 建筑节能是一个全世界关注的话题,而我国节能工作起步较晚,水平较低,建设部虽然颁布了很多节能设计标准,但是从实际调查中发现节能收效甚微,这与检测工作有着必然的联系。2003年,建设部颁发的《建筑节能“十五”计划细要》提出建筑节能标准体系规定检测采用具有权威性的热流计法,但由于检测方法的一维稳态传热假设,使得检测必须在采暖期进行且室内外温差要维持在15℃以上,平均法处理检测结果也要求检测期间天气变化不能太大,苛刻的检测条件使之在建筑节能工程管理领域进行现场检测时受到很大的限制。 目前建筑外围护结构热阻检测方法主要有:热流计法、热箱法、红外热像法等。由于测量时多采用稳态工况,并且忽略了环境因素的影响,使得这些方法应用于围护结构现场检测时误差较大。本项目针对最适合现场检测的热流计法,以围护结构内部热量迁移过程为背景,研究太阳辐射、风速、温差等环境扰量对建筑围护结构检测的影响,研究内容涉及热工测量、有限元理论、反应系数法、传递函数法、数值计算方法以及计算机仿真等多门交叉学科。本项目的研究主要针对建筑围护结构在自然条件下的现场测量,对建筑物能耗分析及建筑节能都具有重要的意义。
西安交通大学 2021-04-11
大空间建筑热环境设计及其计算方法
大空间建筑室内热环境温度分层现象显著,掌握其特性对热环境设计以及空调负荷计算意义重大。长期以来,大空间建筑室内空气温度与壁面温度都是分别孤立求解。研究团队经过近20年的研究,利用并发展了日本求解空气温度的BLOCK模型和美国求解壁面温度的GEBHART模型,建立了BLOCK-GEBHART(B-G)模型,同步求解大空间垂直温度分布与垂直壁面温度,这一模型经盐水模型实验、气态缩尺模型实验、大空间热环境实验基地在有热源、有排风情况下进行了验证,B-G模型的空气温度与壁面温度解析解为大空间建筑室内热环境设计与分层空调负荷计算提供了有力的基础。
上海理工大学 2021-01-12
石墨烯微结构调控及其表界面效应研究
“石墨烯微结构的精准调控及其应用”首次实现石墨烯单晶量子点和单层石墨烯微结构的精准控制。 一、项目分类 重大科学前沿创新 二、成果简介 近年来,石墨烯领域未获得突破性应用成果,也未找到“杀手锏”应用领域,关键是石墨烯结构调控不到位。一个基本的共识是,对石墨烯材料的结构进行设计和调控,有助于在光电器件、能源转化存储、重大疾病诊疗、污染物治理等领域取得重大突破。上海大学吴明红院士领衔的研究团队聚焦“石墨烯微结构的精准调控及其应用”取得了开创性的研究成果,首次实现石墨烯单晶量子点和单层石墨烯微结构的精准控制,在Nature及其子刊上发表十余篇系列论文,获得国家自然科学二等奖。负责人吴明红是中国工程院院士、俄罗斯工程院和俄罗斯科学院外籍院士,获国家杰出青年基金、教育部长江学者及创新团队发展计划等支持。团队依托有机复合污染控制工程教育部重点实验室,推动基础科研成果向应用转化,在生物医学、环境治理等领域取得了相关应用突破。 一、主要理论突破 聚焦于研究主题,团队在以下三个方面取得重要突破: 1)为解决传统方法制备的石墨烯缺陷多,无法量产的问题,团队在分子水平上首次使用分子融合法实现了高品质单晶石墨烯量子点的可控制备。通过对单晶石墨烯量子点精准的物理化学性质调控实现了不同亚细胞器的定位,有力推动了石墨烯量子点在生物成像、重大疾病诊疗中的应用。 2)为解决单层石墨烯容易聚集的难题,团队通过“原位复合与还原”一步法调控策略,获得单层石墨烯复合催化材料。团队首次在该材料上观测到光生电子空穴对分离的皮秒级超快过程,发现并揭示了单层石墨烯高效抽取和快速传输光电子这一重要规律,为高质量单层石墨烯复合材料在催化等领域的广泛应用奠定了坚实的理论基础。 3)精确调节石墨烯层间距,可以将石墨烯有针对性地应用于离子筛分、污染物选择性吸附等广泛领域。团队通过金属水合离子的层间插入控制氧化石墨烯层间距,在国际上首次实现了层间距在超小尺度上(1 Å)的精确控制。 二、在黑臭水体治理、地表水水质提升上的应用 地表水内源污染治理的关键是削减河道污染负荷,重建水生生态。团队以层间距可控石墨烯为基质,发展了水环境污染生态修复的叠层材料。以石墨烯为基体的复合微生物在其表面生长并形成生物膜,通过石墨烯和生物膜的协同作用,对水体污染物进行高效截留、吸附并降解。该复合技术运行成本低,治理周期短,工艺简单,无需底泥疏浚即可将地表水提升至IV类水以上水质指标,对河水的COD、氨氮和总磷,去除率达到80%以上。目前,团队已与上海宝山区政府建立多个石墨烯治理黑臭水体示范基地,显著提升当地水质环境水平。 三、石墨烯负极材料的钠离子电池储能系统应用 锂资源的匮乏,不足以支撑锂离子电池在储能市场的广泛应用,其成本较高的弊端也逐渐显露。同时国内外化学储能市场需求越来越大,促使研究者们利用资源丰富的钠元素组装得到钠离子电池。 经过对钠离子电池材料体系筛选和研究,本团队核心材料选用普鲁士蓝及其类似物作为钠离子电池正极,碳基材料作为钠离子电池负极。其中普鲁士蓝制备主要采用沉淀法及水热法,能耗更低。此外,普鲁士蓝能够作为一种染料进行使用,其安全性非常高。经过一系列放大,正极普鲁士蓝材料的充放电比容量达到160 mAh/g,碳负极材料的充放电比容量达到300 mAh/g。经过中试线生产预制,单体电池工作电压在3.2 V左右,能量密度在100 Wh/kg以上。单体电池在穿刺、挤压、外部短路、及破坏后浸水测试的情况下,均没有发生自燃和爆炸等情况,安全性高。 目前,拟搭建5条钠离子电池储能全自动生产线及相关配套设施,研发生产低成本、高安全、长寿命钠离子电池关键材料,实现高性能钠离子电池产品产业化,预计至2026年项目达产后,年产值达约22.5亿元;年亩均产值1666万元。 四、石墨烯传感材料在呼吸式血糖仪中的应用 我国糖尿病人数众多,并逐年上升。血糖检测仪与检测试纸市场规模约为460亿元,然而国外品牌却占市场份额大半。现有血糖仪采取长期有创刺血检测,存在很大感染风险,给病友带来巨大的生理和心理上的痛苦。呼吸式血糖检测无创,吹气即可检测,完美解决市场痛点。 糖尿病患者呼吸的气体中,可检测的VOCs较异常,需要高灵敏度的气体传感器进行识别。但是,常规气敏传感材料检测限与响应恢复能力不足,且难以在复杂气体氛围中实现特异性检测。团队通过对石墨烯带隙和表界面特性的精确调控,实现皮秒级载流子空穴的形成,从而实现对气体分子的快速响应,解决气体传感器灵敏度、选择性和响应恢复迅速的关键科学问题。研发的呼吸式血糖仪可满足确诊病友的日常检查、实现医院、公共场所快速筛查、手机APP记录管理以及网上专家互动诊断等功能,具有无创伤、无痛苦、便捷即时(15s)等特点,是首款呼吸式血糖检测产品。目前已二类医疗器械证书,即将已进入临床阶段。
上海大学 2022-08-16
首页 上一页 1 2 3 4 5 6
  • ...
  • 177 178 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1