高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
表征太赫兹量子级联激光器多模效应的电路建模仿真方法
本发明涉及一种表征太赫兹量子级联激光器多模效应的电路建模仿真方法,首先建立表征 THzQCL 有源层内部载流子输运特性的多模速率方程组;接着建立表征ThzQCL内部多模态效应的物理方程模型; 然后通过变量代换和化简得到相应的等效电路模型;建立表征 THzQCL 输入端电气特性的等效电路模型; 建立表征 THzQCL 输出端光功率特性的等效电路模型;最后建立电路宏模型,包括一个电气端口和一个 光功率输出端口,基于电路宏模型进行光电性能仿真和输出光谱性能测试。本发明可测试温度对 THzQCL 各种光电性能的影响;可支持实现对 THzQCL 光电性能和输出多模效应的模拟和仿真。 
武汉大学 2021-04-13
超宽频太赫兹完美吸收器
基于有机-无机纳米复合材料制备了一种柔性 的太赫兹完美吸收器,吸收频宽 0.1-20 THz,平均吸收率超过 95%,工作频宽达 到世界领先水平。适用于太赫兹隐身、太赫兹黑体等设备的制备。
上海理工大学 2021-01-12
供应氦氖激光器HeNe激光器
产品详细介绍型号  波长/ um 功率/ mW  光谱结构 偏振度 DownloadsGN-0.5 0.63 0.5 TEMoo 1:1 GN-1 0.63 1.0 TEMoo 1:1 GN-2П 0.63 2.0 TEMoo 100:1 GN-3 0.63 3.0 TEMoo 1:1 GN-5 0.63 5.0 TEMoo 1:1 GN-5P 0.63 5.0 TEMoo 100:1 GN-5M 0.63 5.0 TEMmn 1:1 GN-10M 0.63 8.0 TEMmn 1:1 GN-15 0.63 15.0 TEMoo 1:1 GN-15-1 0.63 15.0 TEMoo 100:1 GN-25 0.63 25.0 TEMoo 1:1 GN-25-1 0.63 25.0 TEMoo 100:1 GN-40 0.63 40.0 TEMmn 1:1 GN-50 0.63 50.5 TEMmn 1:1 GN-60 0.63 60.0 TEMmn 1:1 GN-70 0.63 70.0 TEMmn 1:1 GN-80 0.63 80.0 TEMmn 1:1 LGN-225A 0.63 2.0 TEMoo 1:1 LGN-226A 0.63 1.5 TEMoo 100:1 LGN-223 0.63 10.0 TEMoo 1:1 LGN-223-1 0.63 10.0 TEMoo 100:1 LGN-115 0.63 15.0 TEMmn 1:1 LGN-118 0.63 25.0 TEMmn 1:1 LGN-220 0.63 70.0 TEMoo 100:1 LGN-220M 0.63 100.0 TEMmn 100:1 产品名称: PLASMA 氦氖激光器管产品类别: 激光系列产品 → 氦氖激光器产品编号: 42514563816产品信息: 产品名称: PLASMA 稳定氦氖激光器产品类别: 激光系列产品 → 氦氖激光器产品编号: 42514471016产品信息: 产品名称: PLASMA多波段 氦氖激光器产品类别: 激光系列产品 → 氦氖激光器产品编号: 42514452816产品信息: 产品名称: PLASMA 红外氦氖激光器产品类别: 激光系列产品 → 氦氖激光器产品编号: 42514433416产品信息: 产品名称: PLASMA可见光氦氖激光器产品类别: 激光系列产品 → 氦氖激光器产品编号: 42514392016产品信息:
长春博盛量子科技有限公司 2021-08-23
全固态太赫兹前端关器键件
 1、主要功能和应用领域 针对太赫兹高分辨雷达和通信系统应用需求,研究了常温固态太赫兹连续波发射和接收的总体方案和实现技术,研究了太赫兹平面肖特基势垒二极管非线性模型的精确模型,提出了太赫兹高效倍频电路和低损耗分谐波接收电路的拓扑结构,掌握了太赫兹倍频器和分谐波混频器的优化方法,解决了固态太赫兹关键技术的工艺难题,突破太赫兹连续波发射和接收的关键技术,打破国外技术封锁,提高自主创新能力,形成自主知识产权,相关技术水平达到国际先进,为我国太赫兹技术的发展和太赫兹系统的应用奠定技术基础,提供技术支撑。 2、特色和先进性 1)国内首次报道了400GHz以上频段的太赫兹源,输出功率大于5mW 2)首次开展了太赫兹高功率多管芯二极管的三维电磁模型研究; 3)国内首次报道了220GHz、380GHz和664GHz分谐波混频器,变频损耗指标由于10dB; 4)国内首次开展了基于光电结合的太赫兹高速无线通信系统实验,通信速率大于12.5Gbps; 5)太赫兹核心模块已应用于太赫兹成像和通信系统中。 3、技术指标 太赫兹倍频器指标对比 频段 国外研究机构 电子科技大学 美国VDI FARRAN 仿真 实测 59GHz 26dBm 20dBm 23dBm 17dBm 91.5GHz 22dBm 15dBm 16dBm 13dBm 110GHz 20dBm 12dBm 16dBm 12.5dBm 212.5GHz 15dBm 4dBm 13dBm 7dBm 340GHz 15dBm 4dBm 13dBm 4.5dBm 420GHz 9.5dBm 无 12dBm 4dBm 太赫兹分谐波混频器指标对比
电子科技大学 2021-04-10
全固态太赫兹前端关器键件
成果简介: 1、主要功能和应用领域 针对太赫兹高分辨雷达和通信系统应用需求,研究了常温固态太赫兹连续波发射和接收的总体方案和实现技术,研究了太赫兹平面肖特基势垒二极管非线性模型的精确模型,提出了太赫兹高效倍频电路和低损耗分谐波接收电路的拓扑结构,掌握了太赫兹倍频器和分谐波混频器的优化方法,解决了固态太赫兹关键技术的工艺难题,突破太赫兹连续波发射和接收的关键技术,打破国外技术封锁,提高自主创新能力,形成自主知识产权,相关技术水平达到国际先进,为我国太赫兹技术的发展和太赫兹系统的应用奠定技术基础,提供技术支撑。 2、特色和先进性 1)国内首次报道了400GHz以上频段的太赫兹源,输出功率大于5mW 2)首次开展了太赫兹高功率多管芯二极管的三维电磁模型研究; 3)国内首次报道了220GHz、380GHz和664GHz分谐波混频器,变频损耗指标由于10dB; 4)国内首次开展了基于光电结合的太赫兹高速无线通信系统实验,通信速率大于12.5Gbps; 5)太赫兹核心模块已应用于太赫兹成像和通信系统中。 3、技术指标 太赫兹倍频器指标对比 频段 国外研究机构 电子科技大学 美国VDI FARRAN 仿真 实测 59GHz 26dBm 20dBm 23dBm 17dBm 91.5GHz 22dBm 15dBm 16dBm 13dBm 110GHz 20dBm 12dBm 16dBm 12.5dBm 212.5GHz 15dBm 4dBm 13dBm 7dBm 340GHz 15dBm 4dBm 13dBm 4.5dBm 420GHz 9.5dBm 无 12dBm 4dBm 太赫兹分谐波混频器指标对比
电子科技大学 2015-12-24
工业激光器
成果创新点 光栅尺寸在国际上居于领先地位,最大达到了 1400mm, 远超对手的 940mm;研制了一系列国内首台(套)具有自主知 识产权的米量级光栅研制工艺关键设备;在国际上首创了 曝光拼接方法,实现了利用小口径曝光系统,制作出了远 大于曝光系统口径的光栅;掌握了脉冲压缩光栅设计、工 艺容差分析和工艺过程控制技术,通过对曝光监测、显影 监测和刻蚀监测来保证光栅制作工艺的稳定性,保证了光
中国科学技术大学 2021-04-14
光纤激光器
技术参数光纤激光器输出功率:500W/750W/1000W/1500W/2000W波长:1070-1080nm光束质量(M2):≤1.2机器人型号:STAUBLI  ABB  川崎Fanuc工作范囤:工作半径1400mm-2010mm重复定位精度:±0.05mm(根据机器人不同参数不同)安装方式:地面安装、吊顶安装、倾斜角安装
山东优特智能科技有限公司 2021-08-19
教学激光器
产品详细介绍  一概述  教学固体激光器是为大学物理或激光技术实验室提供的,与《光学》课程中激光原理部分或《激光原理与技    术》课程教学内容相配合的实验用激光器。通过该激光器实验,可使学生形象直观的了解固体激光振荡器、行波放大器、谐波倍频器、及各种调Q装置的结构及组成原理,并掌握固体激光器调试方法。该教学激光器有多种型号,各学校可根据专业设置和教学要求灵活选择。通过该教学激光器可完成以下实验:  固体激光器装调实验  激光器输出发散角测量实验  激光器选横模实验  激光器自由振荡输出特性测量  可饱和吸收被动调Q实验  主动电光调Q实验  激光放大实验  激光倍频实验  激光冲击波实验  二、教学固体激光器组成  教学固体激光器的基本组成有三部分,即调Q激光振荡器单元、放大器单元和倍频器单元。这三个单元不同的组合形成了不同的型号,各学校可根据专业设置和教学要求进行灵活选择,现有以下几种型号:    TL-A  型:固体激光振荡器    TL-B1型:脉冲被动调Q固体激光器    TL-B2型:脉冲被动调Q固体激光器 + 二倍频器    TL-B3型:脉冲被动调Q固体激光器 + 行波放大器    TL-B4型:脉冲被动调Q固体激光器 + 行波放大器 + 二倍频器    TL-C1型:脉冲主动电光调Q固体激光器    TL-C2型:脉冲主动电光调Q固体体激光器 + 行波放大器    TL-C3型:脉冲主动电光调Q固体激光器 + 行波放大器 + 二倍频器    TL-D1型:主动声光调Q固体激光器   本教学激光器所有型号中振荡级工作物质采用Nd3+:YAG晶体。输出波长为1064 nm的近红外激光。放大级也采用Nd3+:YAG晶体。采用Nd3+:YAG晶体优点是它散热性能优良,能够承受高功率,可高重复频率使用。被动调Q方式中,调Q器件采用色芯晶体,它具有结构简单可靠,输出脉冲质量好,成本低的优点。主动调Q方式中,有电光和声光两种方式。电光方式具有输出脉冲功率大的特点,是最为经典的,应用最为广泛的一种方式。声光方式具有重复频率高的特点。倍频器单元采用新型晶体,产生532nm波长的绿光,有高的倍频效率。                   三 、主要性能参数  这里给出主动电光调Q方式的性能参数,其它方式参数与之略有差异。  输出波长:振荡器级   :1064nm                        倍频器级   :532nm   输出能量:振荡器级   :100mJ                        放大器级   :250mJ                        倍频器级   :  75mJ  发散角  :0.5mrad    (1064nm)  调Q脉冲宽度(半高全宽):20 nS   重复频率:电光调Q方式:1-10Hz,或手动                           声光调Q方式:1-25KHz  以上几种方式中仅设计有二倍频,如果配上三次和四次谐波倍频晶体,还可输出355nm和266nm的激光,这样就可构成四波长激光器。  四、整机结构  本教学激光器在结构上分为激光发射平台与机柜两部分。发射平台部分上有盖板,实验时将盖板打开,即可调整各光学部件。实验完毕后,将盖板盖上可以防尘。机柜部分分上下两层,上层为激光电源,下层为冷却用水箱及循环泵。  五、附外观图  
河北丛台电子股份有限公司 2021-08-23
太赫兹测试解决方案
上海启莫科技有限公司 2022-03-17
拓扑体态激光器
近日,北京大学物理学院马仁敏研究员课题组实验发现了拓扑能带反转光场限制效应,将拓扑态的利用由拓扑边缘态扩展至拓扑体态,并基于此实现了一种高性能的拓扑体态激光器。这种新型激光器具有垂直出射、高方向性、小体积、低阈值、窄线宽、单横模、单纵模和高边模抑制比等优异特性。相关工作被《Nature Nanotechnology》杂志以标题 “A high-performance topological bulk laser based on band-inversion-induced reflection” 进行长文报道。 激光器的发明加深了人们对光与物质相互作用的认识,并对现代科学与技术的发展起到了巨大的推动作用。至激光器发明以来,激光微型化始终是一个重要的研究方向。半导体激光器因为易于电泵浦和规模生产与集成等优点,是激光微型化的首要选择。经过几十年的发展,半导体激光器的微型化已经取得了巨大的成就。尤其是具有垂直出射特性的垂直腔面发射激光器(VCSEL),目前已有数以百亿计的该型激光器被广泛应用于数据通讯、激光雷达、人脸识别、数据存储与医疗手术等领域。图1:拓扑体态激光器原理和示意图。(a) 用于构造能带反转的拓扑态和拓扑平庸态光子晶体示意图。(b) 实验中发现能带反转可用来实现光场的反射和限制。(c) 垂直发射拓扑体态激光器示意图。拓扑体态激光器出射方向垂直于光学腔反馈平面。 马仁敏研究员与合作者提出并实现了一种新型垂直发射激光器—拓扑体态激光器。这种新型激光器直径只有数微米,具有良好的垂直发射方向性, 窄线宽,单横模、单纵模,能够在室温下以千瓦每平方厘米阈值稳定工作,单模输出边模抑制比超过36 dB。这些性能与商业化激光二极管相当,根据IEEE以及相关工业标准,指标满足多数应用领域需求。 该类激光器的实现有赖于实验中发现的一种新型光反射和限制机制:能带反转光场限制效应。图1给出了能带反转光场限制效应和基于其实现拓扑体态激光器的原理和示意图:实验中首先通过对二维光子晶体进行变形操作,分别获得了具有拓扑态和拓扑平庸态的能带结构;相较于拓扑平庸态,拓扑态的光子晶体能带结构中发生偶极子和四极子能带间的能量反转;实验和理论计算发现频率靠近能带边缘的光场虽然在拓扑态和拓扑平庸态中都可以自由传播,但是在两者的界面处会发生能带反转引起的光场发射;该能带反转引起的光场反射和限制效应仅发生在布里渊区中心附近,越靠近布里渊区中心,光场反射和限制越有效,使得利用该类型反射机制构建的拓扑体态激光器具有单横模、单纵模、面内反馈、垂直出射等优异特性。图2:拓扑体态激光器件与性能。(a-b) 拓扑体态激光器谐振腔(a)和拓扑界面处(b)的电镜图。(c)随功率变化的光谱。(d)激射光谱。(e)激射实空间近场分布。(f)激射角分辨远场分布。 能带反转光场反射和限制效应为激光物理提供了一种新颖的激光模式选择和出射光场调控机制。基于该原理构建的新型拓扑激光器各项性能均达到了可商业化应用的水平(图2)。新的光场反射和限制机制将拓扑态的利用由拓扑边缘态扩展至拓扑体态,同时该原理可以拓展到电子学、声学和声子学等领域。 该工作发表于Nature Nanotechnology (DOI: 10.1038/s41565-019-0584-x),马仁敏研究员为论文通讯作者;北京大学博士后邵增凯、博士生陈华洲和王所为共同第一作者;其他作者包括北京大学博士生冒芯蕊、杨振乾、访问学生王少雷,以及日本国立材料研究所教授胡晓,学生王星翔。这项工作得到国家自然科学基金委、科技部、北京市自然科学基金、人工微结构和介观物理国家重点实验室、量子物质科学协同创新中心等的支持。
北京大学 2021-04-11
1 2 3 4 5 6
  • ...
  • 359 360 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1