高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种光电化学电池水解制氢的反应装置
本发明公开一种全绿色光电化学电池水解制氢的反应装置.该装置包括水轮发电机,光电化学水解装置,外电路,其中水轮发电机的正极连接工作电极,负极连接到对电极上;水轮发电机是将水流动能转换为电能,产生外加电场,主要由水轮机和螺旋桨组成;光电化学水解装置中工作电极是采用磁控溅射法制备的ZnO薄膜封装后构成,或者是采用原子层沉积制备的TiO2薄膜,厚度60nm,300℃下ALD生长的多晶.本发明成功实现了完全依靠绿色可再生的清洁能源进行能量转化的光电化学电池.本发明采用的水轮发电机通过将机械能转化为电能,再连接到光阳极材料上去,在无需外加偏压的情况下即可高效地分解水产生氢气,从而节约了能耗.
杭州电子科技大学 2021-05-06
自蔓延反应烧结氮化硅/氮化硼复相可加工陶瓷
北京科技大学特种陶瓷研究室开发出一种自蔓延反应烧结氮化硅/氮化硼复相可加工陶瓷材料,其应用前景极其广阔。 Si和N2合成Si3N4反应的绝热燃烧温度高,体积有所增加,生成棒状的b-Si3N4相相互交叉,提高了自蔓延反应烧结氮化硅多孔陶瓷的强度,但氮化硅加工性能差。h-BN陶瓷可加工性能好,但烧结性能差。本项目利用h-BN相在氮化硅陶瓷中形成弱界面,当加工时,弱界面上会形成微裂纹,并沿弱界面发生偏转,耗散裂纹扩展的能量使裂纹扩展终止;当载荷继续上升时,在下层的弱结合界面处将产生新的临界裂纹再扩展;如此反复,使裂纹成为跳跃式阶梯状扩展,断裂渐次发生而非瞬间脆断,使氮化硅/氮化硼多孔陶瓷材料具有了好的可加工性能。 本项目原料中采用了一定比例的Si粉,比完全以Si3N4粉为原料的普通烧结工艺节约了原料成本。产品的基本工艺为自蔓延高温合成(燃烧合成)工艺,在气体高压反应器中进行,烧结所需要的能量完全由原料自身放热提供,与其他制备方法(常压烧结、热压烧结、反应烧结)相比较,不需要高温烧结炉长时间烧结,大大节省了能源。本项目工艺简单,烧结速度快,效率高。可制作复杂形状一维,二维的大尺寸陶瓷材料。抗弯强度已做到188MPa,材料可加工性能优良。 已获中国发明专利《ZL 200610089013.6自蔓延反应烧结Si3N4/BN复相可加工陶瓷的方法》。
北京科技大学 2021-04-11
一种近红外反应型双光子荧光探针及其制备方法和应用
本发明提供一种近红外反应型双光子荧光探针,该近红外反应型双光子荧光探针为一种由1,3,3?三甲基?2?亚甲基吲哚啉?罗丹明酰肼与4?吗啉基?1,8?萘酰亚胺?苯基异硫氰酸酯反应制得的荧光分子。本发明还提供该近红外反应型双光子荧光探针的制备方法和应用。本发明的近红外反应型双光子荧光探针,发射近红外波段红色荧光,通过汞离子诱导的酰胺基硫脲脱硫?环化反应及1,3,3?三甲基?2?亚甲基吲哚啉?罗丹明内酰胺的开环反应等多步串联反应可灵敏调控其在近红外波段的荧光性能,灵敏度高、选择性强、生物相容性好,在近红外双光子荧光成像、双光子荧光传感器、生物荧光分析、荧光标记、环境监测等领域具有广泛应用。
东南大学 2021-04-11
利用溶剂促使配位铝氢化物和铵盐反应制氢的方法
利用溶剂促使配位铝氢化物和铵盐反应制氢的方法,配位铝氢化物的化学式为M(AlH4)m,其中M是能形成配位氢化物的碱金属或碱土金属,m是所述碱金属或碱土金属的化合价,铵盐的化学式为(NH4)nX,其中X是酸性基团,n是酸性基团的化合价,该方法是将配位铝氢化物、铵盐和溶剂加入反应器中相混合,通过溶剂加速配位铝氢化物与铵盐的反应,其中,配位铝氢化物和铵盐的摩尔比为(0.38~4.55) : 1,溶剂的用量为0.4L/mol~100L/mol配位铝氢化物。该方法不需加热,只要配位铝氢化物和铵盐接触,并有溶剂提供反应环境,即可发生反应产生氢气。这种方法能在不提供额外能源的条件下高效释放氢气。
四川大学 2021-04-11
一种减轻化疗副反应的中药组合物及其制备方法和应用
【发 明 人】徐力; 鹿竞文【技术领域】本发明属于中药技术领域,具体涉及一种减轻化疗副反应的中药组合物及其制备方法和应用。【摘要】本发明公开了一种减轻化疗副反应的中药复方,它包含如下重量份数的组分:党参5-10份,炒白术5-10份,茯苓10-15份,黄连1-3份,紫苏梗8-10份,补骨脂10-30份,鸡血藤10-30份,红景天10-15份,法半夏6-10份,陈皮3-6份,石韦10-30份,大枣5-10枚,竹茹6-10,炙甘草3-6份,沙棘3-6份。本发明还公开了上述中药复方的制备方法及其应用。本发明中药复方针对化疗副反应“脾胃虚弱,气血两亏”基本病机,健脾和胃,益气养血,起到减轻化疗副反应的作用,临床具有确切功效。
南京中医药大学 2021-04-13
用于RCO-SCR一体式反应的催化剂的制备方法
本发明涉及化学催化剂及其制备技术领域,旨在提供一种用于RCO-SCR一体式反应的催化剂的制备方法。该催化剂是堇青石负载MgO-CaO-Au-Pd/Al2O3粉末式催化剂的整体式催化剂,其中MgO-CaO-Au-Pd/Al2O3粉末式催化剂是以由MgO与CaO修饰的Al2O3为载体的。本发明利废弃二甲胺溶液作为还原剂处理NOx,废物利用,节省了大量氨资源;通过协同效应,提高了催化剂在低温下的SCR活性;通过碱土金属氧化物MgO、CaO的修饰,增强了催化剂的抗硫性;通过两步湿浸渍制备法,使获得的催化剂分散性良好,活性位点丰富,催化活性强;将粉末式催化剂负载于蜂窝陶瓷载体上,形成整体式催化剂,增加了有效催化面积,提升了催化活性;以蜂窝陶瓷为催化剂载体,通过其蓄热性能,实现蓄热式催化氧化。
浙江大学 2021-04-13
靶向IL-17信号的新型抗移植 排斥反应的药物研究与开发
肾功能衰竭是一种常见的临床疾病,肾移植则被认为是治疗终末期肾病患者的最有效方法。近年来,随着手术操作的日渐成熟,移植免疫的深入研究、组织配型技术的逐渐完善和新型免疫抑制剂的广泛联合应用,肾移植的成功率有了很大提升,早期存活率大幅度提高。然而,术后免疫排斥反应的发生仍然是影响移植肾长期存活的危险要素,肾移植受者的长期存活依然是困扰移植界的一大难题。 以环孢素A为代表的钙调磷酸酶抑制剂的问世,极大降低了急性排斥反应的发生几率,提高了移植物的存活率。然而,这些免疫抑制剂却是一把双刃剑,它不
南京大学 2021-04-14
夹套三口圆底烧瓶,三口双层反应瓶 厚壁
产品详细介绍夹套三口圆底烧瓶,三口双层反应瓶,双层球形三口烧瓶,双层夹套三口烧瓶,夹套烧瓶产品地址:http://www.shhk.com.cn/product_detail-1137.htm 夹套三口圆底烧瓶,三口双层反应瓶,双层球形三口烧瓶,双层夹套三口烧瓶代码规格ml/#单位规格1500/24,24,24只规格21000/24,29,24只规格32000/24,29,24只规格43000/24,29,24只规格55000/24,40,24只规格610000/24,40,24只 夹套三口圆底烧瓶,三口双层反应瓶,双层球形三口烧瓶,双层夹套三口烧瓶,夹套烧瓶。 上海化科实验器材:http://www.shhk.com.cn/ 订单邮箱:sales@shhk.com.cn(推荐)咨询电话:021-67652117,57602161QQ 在线:1152028600。大量供应:夹套三口圆底烧瓶,三口双层反应瓶,双层球形三口烧瓶,双层夹套三口烧瓶,夹套烧瓶。
上海化科实验器材有限公司 2021-08-23
人工智能技术赋能5G超声设备
新冠肺炎常规通过病史、CT等进行病情评估,但重症病房应用超声不便,还需要评估重症患者的心脏等多器官,然而操作者绝大多数不是专业超声医生,这为如何在治疗重症患者的过程中更好地发挥超声的作用提出了难题。深圳国际研究生院袁克虹团队与深圳华声医疗技术股份有限公司合作,用人工智能技术赋能5G超声设备,增添采集心肺关键标准切面的导航以及关键参数的自动测量等功能,辅助医生对重症病人进行动态评估和治疗。 袁克虹团队与深圳华声医疗技术股份有限公司1月中旬组成研发团队,在已有合作工作的基础上,针对新冠肺炎重症患者临床超声的迫切需求开展联合攻关,半个月就获得了较好的成果。该技术从2月初开始在武汉协和西院等多家医院使用,在一定程度上辅助了医生对重症患者进行疾病的动态评估和治疗指导。 目前该技术正由国家感染性疾病临床研究中心(深圳市第三人民医院)牵头开展进一步研究,将完善和改进现有功能,优化远程诊断流程,实现超声为医生治疗重症患者提供更智能、更可靠、更专业的帮助。
清华大学 2021-04-10
建筑用相变储能复合材料及其制备方法
利用物质在相变过程中吸能和释能的特点,实现能量的储存和利用。相变储能具有 储能 密度高、储能温度容易控制和选择范围广等优点。 本发明提出了一种储能功能耐久、成本低廉、适用范围广的建筑用相变储能复合材 料及其制备方法,复合材料以密实度比较高的气硬性或水硬性的胶凝材料为基体,其中 分散多孔材料集料。集料与基体的体积比为 0.4~1.5;在多孔材料集料中储存有机相变 材料,储存量为 30~70%重量比;建筑物构件可具备超过 10 MJ/m3 左右的储能密度;相 变温度可以在 15~60℃之间调节,满足建筑物取暖和制冷的要求。 
同济大学 2021-04-11
首页 上一页 1 2
  • ...
  • 66 67 68
  • ...
  • 96 97 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1