高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种新型太阳能取暖系统
本实用新型公开了一种新型太阳能取暖系统,包括太阳能集热器、储水箱、集热循环泵、采暖循环泵以及控制柜,所述太阳能集热器通过水管和集热循环泵与储水箱导通连接,所述储水箱的上端一侧设有集热出水口,且另一侧设有自来水进水口,所述储水箱的顶部安装有向下的液位计,所述储水箱的中间内壁处安装有温度传感器,所述储水箱的底部靠近自来水进水口的一侧设有采暖循环进水口,所述自来水进水口与采暖循环进水口之间设有采暖循环出水口,所述采暖循环进水口与采暖循环泵的进水口通过水管导通连接,所述集热循环泵、采暖循环泵、温度传感器以及
安徽建筑大学 2021-01-12
光伏发电逆变系统的研究和开发
我们对如何通过预测控制的各要素设计,提升逆变系统的性能指标,进行研究,取得了良好的成果。对LCL型三电平逆变系统,我们在分析系统指标与系统控制量之间关系的基础上,设计了相应的基于个离散控制量的预测控制器,为解决该类非线性约束优化在线计算量大的问题,基于分值定界的思想提出了相应基于DSP的快速算法。为进一步提升逆变系统的效率等指标,我们提出了变系数的光伏逆变预测控制器,在目标函数中对电流跟踪和大电流时开关动作的抑制实现了统一,设计了相应的系数表达式并给出相关算法和实验结果。我们进一步研究了基于预测控制的微电网系统的调度问题,针对微电网群系统集中式优化计算量巨大的问题,我们从结合ADMM,从给出了系统的分布式预测控制器并对其在线迭代算法并进行了研究和验证。同时,我们对无线并联型逆变系统的稳定性进行了分析。达到了预期研究目标。
南昌航空大学 2021-05-04
第三代高效太阳能电池的研发
能源日益紧缺、污染日益严重、气候剧变,人类面临空前的能源危机和环境危机,人们认识到能源供应也必须走可持续发展的道路。在可再生能源中,光伏发电具有独特优势和机遇。它是利用量子力学原理,直接将太阳光能转化为电能,具有高效、无污染、取之不尽、应用灵活、性能可靠等优势。虽然光伏发电已有很大进展,但作为主要能源还有较远距离,其主要原因是太阳能电池的价格仍然较高、光电转换效率还不够高。所以降低成本,提高光电转换效率依然是发展光伏发电的永恒课题。太阳能电池已经历三代的发展。然而,第一代晶硅太阳能电池耗材太多,进一步降低成本的空间已很少;目前第二代薄膜太阳能电池因电池效率较低、稳定性差等问题,严重限制了其推广。新概念第三代高效太阳能电池是继晶硅和薄膜太阳能电池之后发展的新型太阳能电池,采用不同于常规太阳能电池的材料和工作原理,达到高效、低成本、高可靠的目的,已引起科研界极大兴趣,并已成为研发热点。
厦门大学 2021-04-11
第三代高效太阳能电池的研发
"能源日益紧缺、污染日益严重、气候剧变,人类面临空前的能源危机和环境危机,人们认识到能源供应也必须走可持续发展的道路。在可再生能源中,光伏发电具有独特优势和机遇。它是利用量子力学原理,直接将太阳光能转化为电能,具有高效、无污染、取之不尽、应用灵活、性能可靠等优势。虽然光伏发电已有很大进展,但作为主要能源还有较远距离,其主要原因是太阳能电池的价格仍然较高、光电转换效率还不够高。所以降低成本,提高光电转换效率依然是发展光伏发电的永恒课题。 太阳能电池已经历三代的发展。然而,第一代晶硅太阳能电池耗材太多,进一步降低成本的空间已很少;目前第二代薄膜太阳能电池因电池效率较低、稳定性差等问题,严重限制了其推广。新概念第三代高效太阳能电池是继晶硅和薄膜太阳能电池之后发展的新型太阳能电池,采用不同于常规太阳能电池的材料和工作原理,达到高效、低成本、高可靠的目的,已引起科研界极大兴趣,并已成为研发热点。 "
厦门大学 2021-04-10
关于非铅钙钛矿太阳能电池的研究
首次制备出了基于非铅双钙钛矿Cs2AgBiBr6的高质量薄膜及其太阳能电池。对于传统的铅基钙钛矿材料,其结构为APbX3, 如果用一个一价金属和三价金属来代替两个铅,即可形成结构式为A2M+M3+X6的双钙钛矿,又名冰晶石。双钙钛矿是一个非常庞大的家族,理论计算可以形成这种组合的有超过9000种,目前有350种已经被合成。根据计算,有11材料有潜力用于光伏器件。目前已经被合成的有5种左右,但是鲜有双钙钛矿电池报到。其主要原因在于很难制备高质量的双钙钛矿薄膜。通过自己搭建的低压辅助设备首次制备出了高质量的双钙钛矿Cs2AgBiBr6薄膜,研究发现,该薄膜的热稳定性远远好于传统的铅基有机-无机杂化钙钛矿材料。将其用做吸光层,制备出了平面异质结太阳能电池。基于该薄膜的电池在空气中有很好的稳定性,对于无空穴传输层的器件在空气中放置超过4个月其效率没有衰减。说明双钙钛矿在太阳能电池的应用中有非常大的潜力。相关成果发表在《Advanced Science》 (The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film, Adv. Sci. 2018, 5(3), 1700759)。
北京大学 2021-04-11
一种自适应太阳能充电控制器
本发明公开了一种自适应太阳能充电控制器,它是一种利用太阳能向蓄电池充电的控制器,包括蓄电池电压采样电路、温度检测电路、太阳能电池板电压采样电路、太阳能电池板对蓄电池充电的控制电路、负载控制和保护电路。充电由场效应管IRL3803S控制,它比一般的可控电子开关转换速度快,而且导通电阻很小。单片机采用PWM蓄电池充电模式,保证蓄电池工作在合理的状态,提高蓄电池的使用寿命,同时单片机输出的数字信号控制串接在输出回路的场效应管IRL3803的通与断。蓄电池接反时,不会烧坏保险及损坏控制器任何部件,负载电路具有过载和短路保护功能。该控制器高效率、电路简单、能够避免太阳能电池板阵列结温过高。 本控制器使用专用CPU芯片和软件实现了充电过程的智能化控制,主要特点包括: 1. 控制器兼容各种充电策略,对于不同种类的蓄电池(如密封铅酸电池、镍镉电池、镍氢电池、锂电池等)无需更改系统硬件,只需载入不同软件即可实现不同的充电算法,从而满足不同电池的充电要求,使充电过程更加高效可靠。 2. 具有完善的软硬件保护功能,如过充保护、过放保护、短路过流保护、过载保护等,保证了控制器的可靠性。 3. 为实现充电过程控制和保护功能,提供光电池和蓄电池电流电压的高精度测量功能,蓄电池和环境温度的检测功能。 4. 具有蓄电池放电控制功能。蓄电池放电过程与光电池充电相匹配,按照要求可以实现多种充放电模式。 5. 使用PWM(脉冲宽度调制)方式充电过程,保证了较高的充电效率,增加了充电控制的灵活性。 6. 硬件系统全部采用工业级芯片,能够在高温、寒冷、潮湿等恶劣环境下工作。 7. 控制器空闲时工作于低功耗状态,进一步降低系统功耗,提高了充电效率。 主要技术指标: 系统电压24/12V;过充电压26.4/13.2V;过放电压22.2/11.1V;温度补偿-5mV/℃;充电回路压降≤0.26V;放电回路压降≤0.15V;额定充电电流5A;额定负载电流5A;空载损耗≤6mA;工作温度-35℃至55℃。 应用范围: 太阳能的利用对解决能源和环境问题具有重要意义,而能量的存储和释放是利用太阳能的关键技术,太阳能充电控制器可广泛应用于太阳能利用的领域。太阳能充电控制器可以用于太阳能路灯、太阳能广告灯、太阳能草坪灯等的蓄电池充电控制中,其应用范围和前景广泛。
北京交通大学 2021-04-13
具有高填充因子的聚合物太阳能电池
通过合成新型高分子半导体并优化器件工艺,该工作取得了聚合物太阳能电池领域前所未有的高填充因子(76%-80%)。论文还通过对太阳能电池薄膜形貌、电子性质和器件物理的深入研究揭示了高填充因子的起源。其工作原理在于,聚合物和富勒烯取得与基底平行方向的相分离,与基底垂直方向的相渐变(图 1)。该形貌特征有效地抑制了电荷复合,使得电荷能有效和定向性地收集。研究发现,80%的填充因子接近硅太阳能电池,也预示聚合物太阳能电池能量转化效率可能远高于现有水平。
南方科技大学 2021-04-13
三维构架超柔性径向结太阳能电池
此项研究工作利用低熔点金属锡(Sn)催化的低温“气-液-固”(vapor-liquid-solid, VLS)生长技术,在柔软的铝箔表面生长“竖直站立的”三维(3D)硅纳米线阵列。由于分立纳米线在软铝箔表面所形成稳固锚接触,对表面淀积的薄膜起到了关键的稳定作用,避免了薄膜在受力时发生剥离和破裂,解决了在如何在力学特性不稳定的“软”铝箔基底上,构建高品质、稳定光电转换结构的关键技术问题。基于此新型3D径向结光电构架,本工作首次直接在超薄商业铝箔衬底之上,成功制备超柔性非晶硅薄膜电池(5.6%,Voc
南京大学 2021-04-14
面向太阳能燃料制备的高效光电催化材料
哈尔滨工业大学 2021-04-14
纳米流体直接吸收式太阳能蒸汽发生装置及方法
本发明公开了一种纳米流体直接吸收式太阳能蒸汽发生装置及方法,将纳米流体直接吸收式太阳能集热与蒸汽发生集为一体,外管采用无涂层的U型真空管(2),U型真空管内设置有套管蒸汽发生管(5),U型真空管与套管蒸汽发生管之间的环形封闭腔内充满纳米流体(4)。蒸发介质在套管蒸汽发生管中吸收纳米流体的热量后汽化成蒸汽流出。套管蒸汽发生管的内管管壁设有喷嘴(7),用于补充液体增大换热系数。本发明利用纳米流体的光吸收特性直接吸收太阳能并产生中温蒸汽,同时强化了蒸发换热传热性能,从根本上避免了传统集热器吸收涂层耐高温和
东南大学 2021-04-14
首页 上一页 1 2
  • ...
  • 20 21 22
  • ...
  • 655 656 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1