高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
针对富营养化水体的微纳米气泡强化富氧和水生植物种植的高效耦合修复技术
我国湖泊水库近在近20年来富营养化发展速度相当快,藻类爆发日趋频繁,已经严重影响到了饮用水水质。上海地处平原,河道水流缓慢,近年来日益严重的“黑臭河道”现象也是典型的半封闭性水域的富营养化。曝气富氧和种植水生植物是修复富营养化水体的有效技术,但是常规大气泡富氧方式富氧效率低,容易造成底泥扰动反而加重水体污染;水生植物在冬季修复效率低下。前期研究结果发现微纳米气泡具有比表面积大、上浮速度慢的特点,可以改善下层水体的溶解氧浓度,恢复好养微生物和浮游动物的活力。本课题针对富营养化水体,采用微纳米气泡富氧技术与水生植物种植技术相结合的方式,根据不同的水质条件(水库、黑臭河道)调控相应的微纳米气泡的应用方式及条件,结合种植适宜的水生植物,促进植物根系发展提高冬季氮磷去除效率,从而实现水体的高效净化。通过对修复过程中的水质变化规律和微生物演替规律进行动态监测,观察不同微纳米气泡的实施条件对水生植物的生长和根际微生物变化的影响,探索微生物群落特征与水体修复效果的映射关系,用以指导该技术的推广和应用。 我国湖泊水库近在近20年来富营养化发展速度相当快,藻类爆发日趋频繁,已经严重影响到了饮用水水质。上海地处平原,河道水流缓慢,近年来“黑臭河道”现象日益严重,黑臭异味的根源是半封闭性水域的富营养化,外源污染物的过量输入超越了水体的环境容量。封闭性和半封闭性富营养化问题亟待解决,本项目拟开发的环保绿色高效的修复技术具有广阔的市场前景。
同济大学 2021-04-11
一种检测红肉苹果花青苷降低猪卵巢颗粒细胞内活性氧的方法
本发明涉及一种检测红肉苹果花青苷降低猪卵巢颗粒细胞内活性氧的方法。按如下步骤操作:用丙酮浸提出红肉苹果中的花青苷,抽滤,滤液旋转蒸发至丙酮除尽,剩余液体用滤膜过滤后,4℃保存备用;体外培养猪卵巢颗粒细胞;用不同体积分数的红肉苹果花青苷和活性氧阳性对照试剂Rosup刺激猪卵巢颗粒细胞F1代6小时;给细胞装载荧光探针DCFH‑DA,收集细胞后用流式细胞仪检测。本发明方法原理可靠,操作简单,结果显示,红肉苹果花青苷能降低细胞内的活性氧水平,且随着浓度的增加效果越明显。
青岛农业大学 2021-04-13
在二维极限下的高温超导体中对零能束缚态的研究
通过超高真空分子束外延技术,在SrTiO3衬底上成功制备出宏观尺度的单原胞层(厚度小于1纳米)高温超导体FeSe与FeTe0.5Se0.5单晶薄膜,其超导转变温度大约在60 K左右,并通过原位扫描隧道显微镜和隧道谱技术对其中的超导配对机制进行了深入研究。 原位扫描隧道显微镜观测表明沉积的Fe原子处于薄膜上层的Te/Se原子间隙处。由于沉积密度极低,Fe原子以孤立吸附原子形式存在,且吸附位附近无近邻Fe原子团簇。系统的原位超高真空(~10-10 mbar)扫描隧道谱实验发现,对特定的吸附原子/单层FeSe(FeTe0.5Se0.5)耦合强度[数量占比约13% (15%)],Fe吸附原子上可观测到尖锐的零能电导峰(图1)。该电导峰紧密分布在吸附原子附近,衰减长度~3 A,且远离吸附原子时不劈裂。变温实验表明,零能电导峰在远低于超导转变温度时即消失,可初步排除Kondo效应、常规杂质散射态等解释(图2A和图2B)。进一步的控制实验和分析显示,零能电导峰半高宽严格由温度和仪器展宽限制、在近邻双Fe原子情形不劈裂、服从马约拉纳标度方程,这些结果均与马约拉纳零能模的唯象学特征吻合(图2C-图2G)。对沉积于单层FeSe薄膜与FeTe0.5Se0.5薄膜上的Fe吸附原子,结果基本相同。相比于单层FeSe,统计结果表明单层FeTe0.5Se0.5上Fe吸附原子中观测到零能束缚态的几率更高且信号更强。波士顿学院汪自强教授和合作者曾在理论上提出,无外加磁场时,强自旋-轨道耦合s波超导体间隙磁杂质可产生量子反常磁通涡旋。理论上如果单层FeSe和FeTe0.5Se0.5由于空间反演对称破缺而具有较强的Rashba自旋-轨道耦合, Fe原子的磁矩局域破坏时间反演对称,可以使量子反常涡旋“承载”马约拉纳零能模。对单层FeSe和FeTe0.5Se0.5有些理论也预测存在拓扑非平庸相。在二维拓扑超导体中,马约拉纳零能模也会产生于Fe原子诱导的量子反常涡旋中的束缚态。因此,实验中观测到的零能电导峰可归因于Fe吸附原子引起的局域量子反常涡旋。更深入、具体的理解还有待于进一步的实验和理论探索。这一工作将探索马约拉纳零能模的超导材料从三维拓展到二维、从低温超导拓展到超过40 K超导转变温度的高温超导体系,同时无需外加磁场,观测到的零能束缚态原则上可操纵、“存活”温度明显提升。这些优势为未来实现可应用的拓扑量子比特提供了可能的方案。
北京大学 2021-04-11
猪流行性腹泻病毒重组猪霍乱沙门氏菌基因工程活疫苗及制备与应用
已有样品/n猪流行性腹泻病毒重组猪霍乱沙门氏菌基因工程活疫苗及制备与应用。  成果简介:本发明的重组菌株表达的是猪传染性胃肠炎病毒和猪流行性腹泻病毒的保护性抗原基因。其中S蛋白的A、D抗原位点和N蛋白的N321抗原位点是猪传染性胃肠炎病毒重要的免疫原性基因片段,COE基因和SD基因是猪流行性腹泻病毒重要的免疫原性基因片段,均具有良好的免疫保护性。可以同时提供针对猪霍乱沙门氏菌、传染性胃肠炎病毒和猪流行性腹泻病毒三种病原的保护力。  应用前景:目前,PED商品化疫苗主要有灭活苗和弱毒苗两种,这两种疫苗
华中农业大学 2021-01-12
预防和治疗A型魏氏梭菌病的中药组合物、提取物、制剂及其 制备方法和应用
本专利(专利号:ZL201310124826.4 ,发明人系荣昌校区教师,长期从事新中兽药的研发),及中药组 合物,特别涉及防治兔A型魏氏梭菌病的中药组合物,还涉及这种中药组合物的提取物和制备方法,还涉及由 提取物制得的制剂及其应用。目的在于提供预防和治疗防治A型魏氏梭菌病的中药组合物,配方独特,原料来 源广泛,成本低廉。具有清热解毒、凉血止血,能够很好的预防和治疗A型魏氏梭菌病。A型魏氏梭菌病,是常见的一种急性致死性腹泻病,其发病率和死亡率均高,对养殖业的危害极大。祖 国医学认为此病是外邪入里而出现的里热症,其致病机制是热炽盛,犯及气血、致瘀、致热,外窜经络,内 伤脏腑,气阴损伤。饲养管理不良,饲料突然改变、搭配不当、粗纤维不足,使肠道内环境发生改变,肠道 正常菌群破坏,使得A型魏氏梭菌大量繁殖,并产生A型魏氏梭菌外毒素,使感染动物中毒死亡。因此临床上 急需一种中药组合物,能够增强的免疫力,抑制A型魏氏梭菌的生长,中和A型魏氏梭菌产生的夕卜毒素。本专利拟以独占许可方式转让给相关兽药企业,因此,如果本专利能被采用成功上市,将会提高犬细小 病毒病的治疗效果,加之中药残留低,毒副作用小,应用前景非常可观。
西南大学 2021-04-13
一种杀鞘翅目害虫的苏云金芽孢杆菌工程菌及制备方法和应用
本发明公开了一种杀鞘翅目害虫的苏云金芽孢杆菌工程菌及制备方法和应用,CCTCC M2013259。其步骤:A、从杀鞘翅目害虫的Bt菌株YC-03中克隆杀虫晶体蛋白基因cry3Aa8,将该基因插入解离载体pHT304/res中,获得重组质粒pHT3Aa8/res,将pHT3Aa8/res的DNA电转Bt无晶体突变株BMB171,筛选获得转化子,将辅助质粒pBMB1200转入转化子中,挑取在Amp/Erm平板上不生长在LB平板上生长的阳性转化子,在LB液体培养基中传代,挑取在LB平板上生长在四环素平板上不生长的单菌落;B、以柳蓝叶甲和猿叶虫幼虫为试虫,进行毒力生测,比较毒力致死中量LC50,筛选到高毒力工程菌菌株Ace-38。方法易行,操作简便,对鞘翅目的柳兰叶甲、马铃薯甲虫、蔬菜猿叶虫、黄守瓜等多种害虫具有高效毒杀作用,该菌发酵性能优良,具有开发、应用前景。
中国科学院大学 2021-01-12
A110-2型氨合成催化剂的低压活性
在实验室内,于压力70大气压和空速1.0×1O~4时~(-1)的条件下,测定了A110—2型氨合成催化剂的活性.数据处理的结果表明,在此条件下,A110—2催化剂的本征动力学符合Темкин方程,且指数α=0.5.用回归出的反应速度系数和在内径φ800的三套管式合成塔的实测数据,并藉助拟均相一维模型计算了该塔在70大气压、1.O×10~4时~(-1)空速和进塔气含NH_32.45%、Ar2.62%、CH_40.2%时的出塔气含氨分率.当催化剂层进口温度适宜时,出塔气含氨可达11.35%以上.
浙江工业大学 2021-05-06
多功能广普复合广普纳米脱盐脱金属剂
与俄罗斯石油研究院合作研制的多功能复合广普纳米脱盐剂是炼油厂电脱盐装置的化学助剂之一,本药剂具有破乳、降电流、脱盐、脱金属、适应多种原油,对减轻催化剂表面结垢、提高轻油收率、减轻和防止催化床层堵塞有重要作用,具有一定的经济效益。在抚顺、新疆、胜利等油田合炼油厂应用,取得了良好效果,金属脱出率达80%以上,电流降低50%以上,最高降低了80%,原油脱后含盐达到3mg/l以下,最低1mg/l,脱后含水达到0.3%以下。
北京科技大学 2021-04-11
一种复合免疫强化剂及其制备方法和应用
本技术成果创造性地采用廉价的原料生产了一种复合免疫强化剂。该制剂含有益生菌、蛋白质、脂 肪、维生素B、卵磷脂、淀粉酶、脂肪酶、蛋白酶、麦芽糖酶、磷、钙、铁等矿物质及微量元素。
中山大学 2021-04-10
一种微波吸收增强剂及其制备方法和应用
本发明公开一种微波吸收增强剂及其制备方法与应用,该微波吸收增强剂为表面附着一层纳米Fe3O4磁性材料的路用石料,其中,纳米Fe3O4磁性材料的质量分数为5~15%。其制备方法为:(1)将亚铁盐和铁盐溶于蒸馏水中分别配制成浓度为0.5~10mol/L的溶液;(2)在隔氧环境下,将亚铁盐溶液、铁盐溶液和氨水按摩尔比Fe2+:Fe3+:OH-=1:1.6~2:8~16的量先后喷洒在路用石料表面,然后加热并搅拌20~30min;(3)将表面反应后的路用石料放入50℃~70℃的烘箱中加热直至完全干燥;(4)将干燥后的石料加热至80℃使反应残留物分解除去,得到微波吸收增强剂。将这种微波吸收增强剂部分或全部替代普通集料加入到沥青混合料中,可显著提升沥青混合料的微波加热升温速率和微波能量利用率。
东南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 92 93 94
  • ...
  • 146 147 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1