高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
融创教学平台
融创教学平台是一款全方位、多功能的在线学习管理系统,旨在为教育工作者和学生提供便捷、高效的教学与学习体验。平台支持课程管理、督导巡课、资源共享、在线测评、学业分析等多种功能,致力于提升教学质量与学习效果。
北京大智汇领教育科技有限公司 2024-11-28
标准化自动定量康复推拿治疗动物实验研究平台
【发 明 人】朱毅 ; 程洁 ; 朱更坚 ; 励建安 ; 徐斌 ; 金宏柱 ; 李怡【技术领域】本发明涉及的是一种标准化自动定量康复推拿治疗动物实验研究平台,适用于不同康复和推拿手法应用于动物实验的定量研究、量效关系、标准化研究。【摘要】 本发明涉及的是一种标准化自动定量康复推拿治疗动物实验研究平台,适用于不同康复和推拿手法应用于动物实验的定量研究、量效关系、标准化研究。包括固定支架、被测体固定台面、恒定压力机构、水平移动机构、垂直旋转机构和步进电机控制器;固定支架底部装有被测体固定台面,固定支架一侧装有步进电机控制器;水平移动机构由压力移动台、平移导杆、同步带一、同步轮一、同步轮二、步进电机一、限位传感器组成;垂直旋转机构由压力旋转台、花键轴、旋转曲杆柔压球或柔压轮、同步带二、同步轮三、同步轮四、步进电机二组成;所述的恒定压力机构由砝码盒、花键轴、压轮或柔压轮组成,砝码盒安装在花键轴上部,压轮或柔压轮安装在花键轴下端部。  
南京中医药大学 2021-04-13
基于物联网技术的实验室安全管理平台
一种基于物联网技术的实验室安全管理平台,包括实验平台和安装在所述实验平台上的排风装置;所述排风装置为U形管状结构,一端固定在实验平台上,另一端设置吸风口,所述吸风口位于实验平台正上方,排风装置与吸风口连接端内壁设置环形凸沿,所述环形凸沿上端形成倒圆锥形截面,下端形成正圆锥形截面,环形凸沿上端与下端之间形成圆柱形通道。通过排风装置对实验平台产生的废气或烟雾进行排风时,由于环形凸沿的设置,一方面在可以增大排风抽力,使烟雾快速的吸入吸风口并经环形凸沿的圆柱形通道进入排风装置中,另一方面由于环
安徽建筑大学 2021-01-12
实验台-实验桌-实验室操作台工作台
ASKN实验台通体采用优质冷轧钢板加工而成,表面磷化作Epoxy粉末静电喷涂防腐处理。其坚固耐用,钢构架经酸洗磷化处理后,经环氧树脂静电喷涂,使得防潮与防腐有效的结合起来。在结构上祥式上,将承重性与灵活性融合起来。全钢结构产品夺人的质感与光感使实验室显得稳重而优雅,是研究型教学型实验室的上上之选。
北京航天科恩实验室装备工程技术有限公司 2025-03-10
智慧微格教学平台
北京大智汇领教育科技有限公司 2025-01-09
GCX-18C通用智能型电工、电子实验室设备
                                       GCX-18C通用智能型电工、电子实验室设备   通用智能型电工、电子实验室实验室功能:装置提供了齐全的各种电源及信号源,以及各种仪表,为学生提供了一个完全开放的,可充分发挥创新潜能的平台,在此平台上,可以做电工电子常用实验,还可做技能竞赛、课程设计、毕业设计和科技开发;而且模块维修方便,可放手让学生操作、试验,无后顾之忧。该设备依据《电工基础》课程实验,以模块化形象化的思路精心组织设计而成,它将现有传统知识型课程重组为模块化课程, 适合于各类院校的 "电路分析"、"电工学"等课程教学实验,也可与其它教材配合使用。●实训屏斜面式设计,学员操作时可站可坐,很符合人体工程学。●设备的高度控制在1.2米以下,学员坐立操作时,视线完全不受设备阻挡,可清楚地观看教师在讲台上的授课,使设备在实训室中可以因地制宜地布局,增加了设备布局的灵活性,增强了设备的场地利用率。●实训台的两用功能:一用为可提供各种电源及控制按钮(左边设计为操作面板);二用为可放示波器及函数信号发生器(右边设计成空位)。 一、产品的特点:电工电子实验室设备具有较完善的安全保护措施,较齐全的功能(详见实验台结构简介)。实验桌中央配有通用电路板,电路板注塑而成,表面布有九孔成一组相互联通的插孔,元件盒在其上任意拼插成实验电路,元件盒盒体透明,直观性好,盒盖印有永不褪色元件符号,线条清晰美观。盒体与盒盖采用较科学的压卡式结构,维修拆装方便。元器件放置在实验桌下边左右柜内,大大提高了管理水平,规划化程度,大大减轻了教师实验准备工作。 二、实验台及操作桌结构:1.实验台外壳尺寸:123×35×20cm2.三相保险座3.三相电源输入指标4.总开关:实验台电源总开关,带漏电、过载保护5.试验按钮:试验漏电开关漏电功能6.电源输入指示1只7.电源输出指示3只(红、绿、黄三色)8.交流电压表:指示输出线电压9.电压转换开关:与电压表配合使用,监示输出线电压的大小与对称情况10.接线座5只:A单元三相四线及地线输出11.电流表W相电流输出指示12.O/I开关:三相四线电源输出控制(提高安全系数)13.接线座2只:B单元交流低压电源输出14.电表(2A):B单元交流电流指示15.旋钮:B单元3-24V交流低压选择输出16.开关:C单元双路直流稳压电源开关17.旋钮:C单元双路Ⅰ路稳流调节18.旋钮:C单元双路Ⅱ路稳流调节19.接线座2只:C单元Ⅰ路直流稳压输出20.保险座:C单元双路稳压电源保险21.电表4只:双路稳压电源电压、电流指示22.接线座:D单元直流5V稳压输出23.电表:D单元电流0.5V输出指示24.开关1:控制各低压交流电、信号源25.开关2:控制E单元交直流调压电源26.电表:E单元交流电压输出指示27.接线座4只:E单元交流、直流输出口28.旋钮:E单元0~240V电压调节29.插座:G单元220V输出插座30.旋钮:音频功率放大器音量调节31.接线座2只:音频信号输入32.按钮:单次脉使能开关33.接线座3只:单次脉冲输出口34.电表:函数发生器正弦波输出电压指示35.旋钮:正弦波输出三级衰减幅度粗调36.旋钮:正弦波输出口37.接线座:正弦波输出口38.旋钮:矩形波输出幅度调节39.接线座:三角波输出口40.旋钮:函数信号发生器频率细调41.接线座:矩形波输出口42.旋钮:函数信号发生器五级频率粗调43.电表:函数发生器输出频率指示44.万用表:500型45.智能型交流电路测量电表:通过开关切换可同时测量电路I、U、KW、Kwh、T,八位液晶显示。46.实验桌面尺寸:160×70cm47.通用电路板:规格35×90cm,元件盒在其上任意拼插进行实验48.储存板:放置元件盒49.左储存柜:放置储存板(带门锁)50.抽屉:放置常用工具51.右储存柜:放置储存板(带门锁)52.示波器:型号不限(用户自备)53.工具三、实验台主要技术指标:1、输入工作电源:三相四线2、输出电源及信号A单元:三相四线B单元:交流3、6、9、12、15、18、24VC单元:双路恒流稳压电源(具有过载及短路保护功能),二路输出电压都为0~30V,内置式继电器自动换档,由多圈电位器连续调节,使用方便,输出*电流为2A,具有预设式限流保护功能。电压稳定度:<10-2 负载稳定度:<10-2 纹波电压:<5mvD单元:直流稳压5V,电流0.5AE单元:交直流电压0~240V连续可调,电流2AF单元:220V电压输出,供外接仪器使用。3、单次脉冲源:每次均可输出一对正负脉冲4、函数信号发生器(正弦波、三角波、矩形波)①频率范围:5HZ-550KHZ分五个频段②频率指示:由HZ表直接读出③电压输出范围:正弦波:5HZ-250KHZ>4.5V、250KHZ-550KHZ>3.5V三级衰减:0db、20db、40db具有连续细调矩形波:5HZ-250KHZ>4.5V、250KHZ-550KHZ>3.5V,幅度连续可调三角波:5HZ-550KHZ>1V5、音频功率放大器:输入音频电压不低于10mv,输出功率不小于1W,音量可调,内有喇叭,用于放大器电路扩音,也可作信号寻迹仪器使用。6、智能型多功能交流测量电表:精度1.0级,能同时测量电路电流I、电压U、功率Kw、电能Kwh和工作时间T,八位液晶显示。7、绝缘电阻:>5MΩ8、漏电保护:漏电动作电流≤30mA四、结构与配备(以二十四座为例)1、实验桌:12台学生实验桌,一台两座,桌子外形尺寸:160×70×80cm。桌中央配置通用九孔电路板(尺寸:35×90cm )根据实验电路在其上任意拼插元件盒成实验电路,元件盒盒体透明直观,内装元件一目了然,盒盖印有永不褪色元件符号,盒盖与盒体结合采用较科学的压卡式结构,维修拆装方便。每张台桌配有一粒胶皮板,保护通用底板与桌面(如需在桌上放置电动机、焊接等)桌下部是元件储存柜,放置实验元器件。2、示教控制台:1台示教控制台,分别控制12台学生台的电源。通用电路板演示屏立在实验台上,演示屏尺寸为160×70cm。用于讲解、演示。3、实验台:13台,学生实验桌及示教控制台上各配1台。4、器材配备:13台180W电动机,26只时间继电器,26只热继电器,65只交流接触器,156只交直流电表,13只MF-47万用表,13套剥线钳、螺丝刀等工具,13套实验所需电阻、电位器、电感线圈、变压器、二极管、三极管、场效应管、集成电路、集成座、可控硅、逻辑电平开关及逻辑电平指示、传感器件等元件盒(元件已装在元件盒内)。5、用户自备器材:示波器(型号不限),晶体管毫伏表,滑线变阻器等。五、实验项目:(1)电工实验       1.电工测量仪表的使用       2.常用元件的识别与检测      3.线性元件与非线性元件的伏安特性4.电源的外特性       5.电位值、电压值的测定    6.电流表和电压表的扩程       7.基尔霍夫定律的验证    8.验征楞次定律9.迭加原理与互易定理的验证     10.戴维南定理与诺顿定理的验征    11.电压源与电流源的等效变换     12.受控源特性的研究         13.一阶电路实验           14.二阶电路的过渡过程15.研究LC元件在直流和交流电路中的特性16.负载获得*功率的条件17.交流电路参数的测量18.正弦交流电路中RLC元件的特性19.RL及RC串联电路实验20.RLC串联谐振电路21.日光灯电路的连接及功率因数改善22.三相负载的星、三角接法23.三相电路及功率的测量24.R-C选频网络的研究25.二端口网络研究 26.单相变压器实验      27.互感电路实验28.三相异步电动机的使用与起动29.三相电动机继电接触控制的基本电路30.三相电动机Y一△起动控制实验31.三相电动机的顺序控制实验32.三相电动机能耗制动控制实验利用上述32项实验的元器件也可完成下面电路实验33.最简单的电路           34.电路中各点电位与参考点的选择  35.电阻的串联            36.电阻的并联            37.电阻的混联            38.电阻分压器电路          39.全电路欧姆定律          40.电桥的应用与平衡条件      41.节点电压法           42.回路电压法       43.支路电流法            44.RCL并联电路        45.串联电路         46.变压器结构及工作原理     47.基尔霍夫第一定律         48.基尔霍夫第二定律         49.日光灯电路原理  50.扩大电压表量程         51.扩大电流表量程52.RC电路的过度过程         53.RL过渡过程          54.电容的串联电路         55.电容的并联电路   56.电容器的充放电57.电容器在交直流中的作用58.条形磁铁在线圈中的运动59.电容的混联60.纯电阻、电感、电容电路61.磁耦合线圈的顺串62.磁耦合线圈的反串63.欧姆表的工作原理64.双联开关二地控制65.用示波器观察磁滞回线66.磁路欧姆定律67.两线圈的互感及同名端68.互感耦合69.提高功率因数的方法70.单相电路功率的测量71.收录机电源电路72.滤波电路73.电阻与温度的关系:用伏安法测出灯丝在不同电压下的阻值。74.三相异步电机闸刀控制正转实验75.具有过载保护的控制线路76.按钮控制的正反转控制线路77.接触器控制星一三角降压起动控制线路(2)电子实验1.晶体二极管的特性及检测       2.晶体三极管输入输出特性3.低频小信号电压放大器4.直接耦合两级放大器5.RC耦合两级放大器6.负反馈对放大器性能的影响7.变压器耦合推挽功率放大器8.互补对称推挽功率放大器(OTL)9.单相半波整流10.单相全波整流11.单相桥式整流12.单相桥式整流滤波13.单结晶体管特性14.单结晶体管触发电路15.晶闸管简单测试及可控整流电路16.场效应管测试17.串联型稳压电压18.差动放大电路的研究19.集成运放参数的测试20.集成运放减法电路21.集成运放加法电路22.集成运放积分电路23.集成运放微分电路24.集成运放文氏正弦波振荡器25.电容三点式振荡器26.电感三点式振荡器27.集成稳压电路28.无稳态电路(多谐振荡器)29.施密特触发器30.集成与门逻辑功能测试31.集成非门电路逻辑功能测试32.集成或门电路逻辑功能测试33.集成与非门逻揖功能测试34.CMOS门电路的测试35.基本RS触发器36.JK触发器37.D触发器38.555时基电路的应用(方波发生器)39.二一十进制计数器40.二一十进制8421译码器41.加法器42.减法器43.用集成与非门构成单稳态触发器44.组合逻辑电路利用上述44项实验元器件也可完成面实验45.P-N结单向导电特性46.三权管ICBO的测量电路47.三极管ICEO的测量电路48.三极管电流放大  49.三极管的VA特性  50.带负载的单级小信号电压放大51.电压负反馈偏置电路52.分压式电流负反馈偏置电路53.用热敏电阻稳定工作点54.用二极管稳定工作点55.分析Ce对低频特性的影响56.共基极放大实验电路  57.共集电极放大实验电路58.共源极基本放大电路59.场效应管自给偏压放大电路60.场效应管分压式自偏压电路61.场效应管共漏极电路62.场效应管共栅极电路63.单管阻容放大电路64.基本直流放大电路65.用电阻提高后级发射极电位66.用稳压管提高后级发射极电位67.变压器耦合放大电路68.甲类功率放大电路69.乙类功率放大电路70.串联电流负反馈71.串联电压负反馈电路72.并联电压负反馈电路73.并联电流负反馈电路74.两级放大电路中的负反馈75.射极输出电路76.自举射极输出电路77.用电容衰减高频电压       78.用负反馈消除自激振荡79.电池监视电路80.场效应管、三极管组成放大电路81.PNP-NPN直接耦合放大电路82.共基共射放大电路83.晶体管开关作用84.液位光电控制85.简单的温控电路86.模拟光控简易路灯自动开关电路87.RC移相振荡器88.双T选频网络89.双T选频网络组成的振荡器90.变压器反馈式振荡电路91.场效应管变压器反馈式振荡电路92.防盗报警电路93.串联型晶体振荡电路94.互补音频振荡讯响器95.报警讯响器96.音乐门铃电路97.电子报警器电路98.差动放大电路的基本形式99.电子门铃电路100.准互补对称电路101.三管OTL互补对称电路102.长尾式差动放大电路103.差动输入单端输出104.单端输入双端输出105.单端输入单端输出106.双电源式长尾差动放大电路107.差动式放大器实验电路108.具有恒流源的差动放大电路措施109.单端输出差动放大电路的温讽分析110.闪光器电路111.运算放大器的基本接法112.电流差动式运放用作交流比例放大113.Vos的简易测量方法114.Aos的简易测量方法       115.Aod的简易测量方法    116.共模抑制比Cmrr的简易测试117.*共模输入电UIcm的简易测试118.Yopp的简易测试119.SR的测量方法120.基本同相放大接法121.运放构成的LC振荡器122.电热杯调温电路123.引到反向端输入调零措施124.引到同向端输入调零指施125.为使电值不致过大的接法126.利用三极管的基极电流实现Ios的温度补偿127.利用T型网络提高等效反馈电阻  128.使互补管工作在甲乙类扩大输出电流的措施129.对电容负载进行校正时措施    130.反相输入保护措施131.同相输入保护措施    132.利用稳压管保护器件      133.电源极性错接的保护    134.电源启动瞬间过压保护    135.二极管检波电路      136.利用PN结的温度系数测量温度的电路原理137.双二极管限幅器138.反相运放基本电路    139.可变比例放大    140.同相运放基本电路    141.电压/电流变换电路    142.电流/电压变换电路143.电压跟随器    144.差动放大基本电路    145.运算放大器的差动输     146.反相输入求和运算    147.同相输入求和运算148.双端输入求和运算149.基本积分电路150.EG考滤泄漏阻对的积分运算电路 151.提高积分时间常数的措施152.快速积分电路153.模拟一阶微分方程电路154.模拟二阶微分方程电路155.基本微分电路156.实用微分电路157.利用间接方法得到近似微分158.基本对数运算电路159.利用三极管的对数特性组成对数运算电路160.反对数放大的基本电路161.Vo正比于VxVy电路162.简单的过零此较电路163.具有滞迥特性的比较电路164.双限比较电路165.利用二级管作为上限检测幅度选择电路166.双限三态比较电路167.下限检幅选择电路168.基本采样保护电路169.RC无源网终的低通滤波电路170.滤波电路接到组件的同相输入端171.滤波电路接到组件的反相输入端172.简单二阶RC滤波电路173.典型RC有源滤波电路174.两阶有源滤波电路175.多路反馈二级有源滤波电路176.典型二阶高通有源滤波电路177.基本带通滤波电路178.典型带通滤波电路179.用双T网络组成的带阻滤波180.输出限幅的反相器181.实用差值运算放大器182.矩形波振荡电路183.阻容移相触发电路184.电热褥调温装置185.宽度可调的矩形波发生器186.简单的锯齿波发生器187.幅频可调的锯齿波发生器188.单相桥式整流常用画法电路189.全波整流电路的*反向峰值电压190.电容滤波电路191.电容滤波带电阻负载      192.全波整流电容滤波电路193.RC滤波电路194.多段RC滤波电路     195.基本的LC滤波电路    196.T型滤波电路    197.二倍压整流电路    198.三倍压整流电路    199.基本稳压管稳压电路     200.基本调整管稳压电路    201.具有放大环节的稳压电路    202.调整管稳流电路    203.电子滤波器    204.串联稳压电路 205.并联稳压电路206.电子催眠器   207.三端集成稳压电路208.正电源输出可调的集成稳压电路209.单相全波可控整流210.硅稳压管稳压电路211.单相半波可控整流212.单相桥式半控整流213.充电用硅整流器原理214.感性负载对晶闸管的影响215.晶闸管触发导通试验216.反电动势负载晶闸管电路217.简易电子调压电路218.测试单结管分压比n219.单结管振荡电路220.单结管触发应用电路221.二极管"与"门电路222.三极管"或"门电路223.与逻辑形象化224.或逻辑形象化225.非逻辑形象化226.三极管"非"门227.三极管"与非"门228.三极管"或非"门229.三扳管双稳态电路230.三极管单稳态电路231.三极管多谐振荡电路232.置位触发电路233.射极耦合双稳态234.对称式多谐振荡器235.环形多谐振荡器236.微分型单稳态电路237.集成施密特电路238.矩形波发生器239.单脉冲电路240.连续脉冲发生器
上海计呈教学设备有限公司 2025-04-22
一种缸体浮动的高压高速往复密封实验测试平台
1. 痛点问题 液压往复密封作为航空液压系统的关键基础,其泄漏导致的液压系统减能或失效,轻则影响航空装备的完好率,重则造成飞行事故。关于往复密封的研究距今已有了80多年的历史,现该技术的理论模型和实验仿真等在低压、低速工况下的研究已较为成熟。然而近几年随着主机装配性能的不断提高,往复密封的研究也要往保证高压高速下密封性能和密封寿命的方向突破,高压高速的严苛工况给往复密封技术提出了更高的要求。 往复密封技术是涉及材料学、机械学、力学、摩擦学及传热学等多个学科的综合性密封技术,对于往复密封系统中的摩擦力和泄漏量等物理量的测量本身就有一定难度,在高压高速的工况下测量的难度会更大;不仅如此,想要控制系统内的高压,并且让活塞杆有较稳定的高速运动,在实现上也有技术难度;另外,高压高速的艰难工况会给密封系统带来较为严重的温升,由密封界面的摩擦导致的大量摩擦生热,只能通过活塞杆和实验缸体内的油液运走,所以对于这样的高压高温系统,必须要设计合理的冷却系统控制密封界面和实验缸体内的温度。 2. 解决方案 为了使实验装置能够成功模拟高压高速的恶劣工况,并解决在此工况下的测量难题,本发明提供一种高压高速往复密封实验测试平台的方案和结构设计,整套实验设备以实验缸体为核心,配套提供高速往复运动的驱动装置、进行系统降温的冷却装置,并且将实验缸体浮动式安装以准确地测得密封圈摩擦力。 本发明通过组合偏心轮、导杆、直线轴承等传动装置,形成了曲柄滑块机构,实现了活塞杆的往复高速运动,将直线轴承布置在缸体两侧,可以有效地平衡导杆传递给实验杆的力矩,同时可以通过设计偏心轮的转动惯量,平衡高速往复运动所带来的惯性冲击;将整个缸体浮动安装,并用力传感器将其与机架相连,实现了密封圈摩擦力的测量。
清华大学 2021-11-05
开放式虚拟仿真实验教学管理平台软件
一、平台背景 虚拟仿真实验教学是高等教育信息化建设和实验教学示范中心建设的重要内容,是学科专业与信息技术深度融合的产物。为贯彻落实《教育部关于全面提高高等教育质量的若干意见》(教高〔2012〕4号)精神,根据《教育信息化十年发展规划(2011-2020年)》,教育部决定于2013年启动开展国家级虚拟仿真实验教学中心建设工作。其中虚拟仿真实验教学的管理和共享平台是中心建设的重要内容之一。 目前,大多数高校都有针对课程使用实验教学软件,但由于每个专业或课程的情况不同,购买的软件所采用的工作环境、体系结构、编程语言、开发方法等也各不相同。由于学校管理工作的复杂性,各校乃至校内各专业的实验教学建设大都自成体系,各自为政,形成了“信息孤岛”。主要面临如下问题: • 管理混乱,各种实验教学软件缺乏统一的集中管理; • 使用不规范,缺乏统一的操作模式和管理方式; • 可扩展性差,无法支持课程和相应实验的扩展; • 各系统的数据无法共享,容易形成“信息孤岛”; • 缺乏足够的开放性; • 软件部署复杂,不同的软件不能运行在同一台服务器上。 二、平台目标 该平台的目标就是高效管理实验教学资源,实现校内外、本地区及更广范围内的实验教学资源共享,满足多地区、多学校和多学科专业的虚拟仿真实验教学的需求。平台要实现学校购置的所有实验软件统一接入和学生在平台下进行统一实验的目的,通过系统间的无缝连接,使之达到一个整体的实验效果,学校通过该平台的部署,不仅可以促进系统的耦合度,解决信息孤岛的问题,还可以使学校能够迅速实施第三方的实验教学软件。 平台提供了全方位的虚拟实验教学辅助功能,包括:门户网站、实验前的理论学习、实验的开课管理、典型实验库的维护、实验教学安排、实验过程的智能指导、实验结果的自动批改、实验成绩统计查询、在线答疑、实验教学效果评估等功能,同时该平台可扩展集成第三方的虚拟实验课程资源或自建课程资源,为各类院校虚拟实验教学环境提供服务并进行相应的应用。 三、应用方案 《国家中长期教育改革和发展规划纲要(2010-2020年)》第十九章第六十条明确指出:加强优质教育资源开发与应用。加强网络教学资源库建设。引进国际优质数字化教学资源。开发网络学习课程。建立数字图书馆和虚拟实验室。建立开放灵活的教育资源公共服务平台,促进优质教育资源普及共享。创新网络教学模式,开展高质量高水平远程学历教育。 虚拟实验建设的理念就是采用我们这个方案的理念(平台+资源),发布一个虚拟实验中心门户网站、建设一个开放式虚拟仿真实验教学的管理和共享平台,然后再陆续把相关虚拟实验课程的资源统一放到该平台来进行管理,从而面向各个学科的相关课程开展虚拟实验教学。 四、平台的主要功能 开放式虚拟仿真实验教学的管理和共享平台包括虚拟实验中心门户网站、实验前的理论学习、实验的开课管理、典型实验库的维护、实验教学安排、实验过程的智能指导、实验结果的自动批改、实验成绩统计查询、数字化资源管理、师生互动交流和系统管理等子系统。 虚拟实验中心门户网站:一个动态Web系统,系统内容包括中心介绍、实验教学、实验队伍、管理模式、设备与环境、教学特色、中心新闻/公告/通知等。 实验教务管理:课程库、培养计划、排课、选课、开课审核等功能。 实验教学管理:现场实验安排、虚拟实验安排、实验批改、考勤管理、成绩管理、实验报告等。 实验前理论学习:实验前学生通过练习、自测、课件等方式学习实验理论知识。 实验过程智能指导:学生在实验过程中遇到问题可以请求指导,系统给出指导信息。 实验结果自动批改:学生提交实验结果后系统自动评判,给出分数和评分点。 数字化资源管理:各种虚拟实验、仿真软件和演示动画的上传、发布。 实验室开放预约管理:实验室设备借出、实验室预约、实验预约、工位预约管理。 师生互动交流:实时答疑、在线留言等。 系统管理:用户、分组、角色、权限、日志、备份管理和实时监控等。 五、平台特点 1)系统针对学校实验教学整体需求设计,满足校级实验教学需要; 2)可集成所有符合标准的第三方虚拟实验系统和软件; 3)经典实验的设计采用B/S架构,方便学生使用和系统部署; 4)全面开放了实验室的实验资源,提供开放式实验教学服务。方便学生自主灵活参与实验,充分发挥学生的主观能动性,提高实验教学的效果; 5)多种角色应用体系,多种业务权限配置,满足学生、教师、教务人员、实验室管理人员和校领导的需求,受益面广; 6)人性化的协同学习,帮助教师和学生随时随地通过网络在线或离线交流; 7)虚拟实验和现实实验相结合,丰富了实验教学方式,通过系统可同时管理硬件实验和虚拟实验; 8)实验教学排课灵活,可统一安排也可学生自选,提供学生、教师以多种方式打印课表; 9)多种数据导入导出功能,方便各种身份角色数据汇总、数据统计; 10)可无缝集成到学校的教学教务管理系统中; 11)支持实验报告在线提交,并提供实验报告在线批注和智能批功能; 12)可根据现实实验室进行直观的工位布局,方便学生预约和入座; 13)支持在线多媒体编辑宣传内容,可实现实验中心与下设实验室门户网站统一管理; 14)系统更加注重实验教学效果。
北京润尼尔科技股份有限公司 2022-09-09
IECUBE-3831集成电路多功能实验基础平台
IECUBE-3831集成电路多功能实验基础平台是一个用于选择集成电路基础实验方案的主控平台,内置半导体器件&工艺等各类仿真器和模型,与IECUBE-3832实验用半导体参数分析仪配合使用构成完整实验平台。
北京曾益慧创科技有限公司 2022-07-08
嵌入式智能机器人创新实验平台(CES-RBOT15)
智能机器人创新实验平台是由海天雄研发的以Cortex-A15高性能ARM芯片为上位机来控制机器人行为动作的平台,由上位机系统(ARM芯片)与下位机(51芯片)两大部分组成。该平台可根据不同的实验需求进行独立工作。 上位机(三星公司Cortex-A15的5260 ARM芯片)主要是运行控制机器人的Android应用程序,并且此系统也拥有丰富的外设,可以用来学习Android应用程序的开发以及ARM芯片的学习,可以作为整个嵌入式系统的教学平台使用。 下位机(AT89C51系列的芯片)主要是根据上位机发送的命令控制机器人的动作行为,此系统可以拥有一般51单片机的外设(LED、数码管、蜂鸣器等),可以独立使用,并且拥有大量的传感器,例如:舵机、超声波、直流电机、摄像头等。 智能机器人创新实验平台采用的是上位机控制,通过WiFi路由通道,根据下位机探测的环境因素判断情况回传给上位机以此智能控制。另外,可以在非控制情况下循迹运行。主要由四大块组成:上位机5260平台运行Android程序、WiFi路由模块、单片机与驱动模块以及机器人的感知与控制系统。
深圳市海天雄电子有限公司 2021-12-08
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 230 231 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1