高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
艾柯AI人工智能实验室超纯水系统
  艾柯AI人工智能实验室超纯水系统  EDI去离子水, 实验室专用超纯水机、纯水设备, 电阻率≥18.2或电导率≤0.055 适合水源:城市自来水 制 水 量:100L-200L/H 出水水质:纯净水、RO纯水、UP超纯水 产品配置:7寸触摸屏、双波长紫外消解仪、原装进口耗材、可加配移动取水手臂 产品特点:TOC实时检测显示、全智能语音助手、远程控制     AI人工智能实验室超纯水系统 “艾柯AI人工智能实验室超纯水系统是配备艾柯自主技术4G物联网功能,可连接手机或电脑远程操控整套系统,采用微电脑全自动控制,配备PLC物联网模块,人性化设计,占地面积小,操作使用方便。设备一机多用,可同时制备取用多种水质的水,纯净水、RO纯水、UP超纯水。产水量100-200L/H可选,RO水水质电导率≤5 μS@25℃,超纯水水质标准优于GB6682-2008一级水标准,全面满足各类清洗、实验、分析、科研等不同用水需求。”       ▎技术参数 ▎艾柯-专注水处理行业22年 机器型号 AK-AIZN-UP AK-AIZN-EDI-UP 进水水源 城市自来水 水温5-40℃ 水压1-5kg  TDS<350ppm 电    源 380V/50HZ 功     率 1KW 1.2KW 机器重量 185KG 200KG 主机体积 长650mm×宽900mm×高1388mm 制备取水 一机多用,可同时制备取用多种水质的水:纯净水、RO纯水、UP超纯水 储水箱 22G全封闭真空压力储水桶或PE桶 紫外灭菌 配置185nm和254nm双波长紫外消解仪 制水量 100L/h  120L/h  150L/h  180L/h  200L/h 取水流速 饮用纯净水:3.4L/min  RO纯水:3.2L/min  UP超纯水:3L/min 饮用水水质 电导率≤10uS/cm@25℃ 水质达到中国国家瓶装饮用纯净水(GB17324-1998)标准 RO纯水水质 电导率≤5μS/cm@25℃;电阻率≥0.2ΜΩ.cm@25℃;杂质去除率98% 水质标准达到中国国家实验室用水(GB6682-2008)三级水标准优于普通蒸馏水 超纯水水质 电阻率值 18.25ΜΩ.cm@25℃ 电导率值 ≈0.055μS/cm@25℃ 热 源 <0.01Eu/ml <0.02Eu/ml 微生物值 <1cfu/ml 总有机碳 TOC:<3ppb TOC:<1ppb 阳离子含 <0.02ppb <0.01ppb 阴离子含 <0.03ppb <0.02ppb 达到标准 中国分析实验室用水规格(GB6682-2008)一级水标准美国试药级(CAP、ASTM、NCCLS)超纯水水质标准中国国家电子级超纯水规格(GB/T11446.1-1997)EW-I标准 标准配置  PP→AC→RO→DI→UP→UV→UF PP→AC→RO→EDI→UP→UV→UF 适用范围 分子生物学、血液分析、微量分析、药物成分分析、ICP-MS、ICP、GC-MS、LC-MS、HPLC、AAS、PCR、TOC等各行业高端标准实验室研究、分析、检测用水   ▎系统功能 ▎艾柯-专注水处理行业22年 智能语音远程控制 微电脑全自动控制,配备PLC物联网模块,人性化设计,具备人机对话功能 多功能预警系统 系统具备故障监测、自动报警功能,可远程修复控制系统的各项错误乱码程序 定量定质定时取水 系统具备定时、定量、定质取水功能,可任意设置定量取水(0.5L-100L),定质取水(R0水、EDI水、UP水)定时取水(1min-60min),免除人工频繁手动取水等候 360°可移动取水手臂 配备取水手臂加脚踏取水功能,同时拥有三套控制取水功能,设备操作更加便捷、可靠 AI语音智能对话 具备AI语音智能对话,语音唤醒开机、关机、待机、取水 取水记录下载功能 支持历史系统记录查询,可保存两年取水记录,可通过USB远程读取数据 四路水质检测显示 具备“AK”专用四路水质检测和温度显示功能,可同时检测和显示:进水电导、RO水电导、UP水电阻、EDI水电阻 TOC实时检测显示 具备“AK”专用内置总有机碳量(TOC)检测装置与现实功能,设计符合USP要求检测范围0-999ppb,检测精度士1ppb,提供在线TOC检测 原装进口纯化滤芯 配备“AK”专用大容量核子级超纯化罐、DI纯化柱,水质稳定,寿命更长 智能液晶触控大屏 配备7寸智能电容屏,可以实时查看整机运行流程图加各项检测数据,操作简单、智能 封闭式一体化设计 系统采用中央一体式设计,无外置模块,占地面积更小系统集中化使安装、位移、维护更加便捷   ▎适用范围 ▎ 艾柯-专注水处理行业22年 生化分析、血液分析、微量分析、环境分析、理化检测分析 药物成分分析、基因研究、分子生物学、生命科学、组织培养 生物工程、动植物细胞培养、氨基酸分析、蛋白质纯化、毒理研究 IVF实验、DNA测序、毒理研究、ICP-MS、ICP GC-MS、LC-MS、HPLC、AAS、PCR、TOC等标准实验室研分析、检测用水    
成都唐氏康宁科技发展有限公司 2025-05-28
利用超临界流体连续生产生物柴油和分离功能性成份
高校科技成果尽在科转云
西安交通大学 2021-04-10
以二氧化碳超临界流体为介质的制革方法
成果描述:本成果提供了一种以二氧化碳超临界流体为介质的制革方法。该方法包括采用二氧化碳超临界流体为介质进行制革脱脂、酶脱毛、软化、鞣制、染色和加脂等工序的操作,在上述操作时基本不使用夹带剂,并且在二氧化碳超临界流体处理过程中使温度降低到33℃,压力降低到9.0MPa以下,处理时间缩短到60分钟,几乎不使用水,使皮革加工过程能耗更为降低,具有巨大的经济、环境和社会效益。市场前景分析:二氧化碳超临界流体制革是解决传统制革水用量大,污水不易治理的重要方法,从制革源头上避免使用大量的水。随着国家对环保问题的重视,各大制革企业对该项技术均有需求。与同类成果相比的优势分析:二氧化碳超临界流体压力:7.4-10MPa; 制革温度:33-45℃; 成革收缩温度:大于95℃; 成革物性达到所制革的行业标准; 耗水量:1吨水/吨皮。 国际先进。
四川大学 2021-04-11
基于流体管道压力脉动的机—电转换孵化能器的设计研发
北京工业大学 2021-04-14
基于磁流体微流控技术高效制备均一微细球形颗粒的研究
北京工业大学 2021-04-14
一种基于微流体技术的非侵入式眼压检测传感器
本发明公开了一种基于微流体技术的非侵入式眼压检测传感器, 包括角膜接触镜、螺旋电感、边缘电容和内圈电容,其中,角膜接触 镜内部设置有腔体和微流体通道;腔体与微流体通道相连通,用于存放流体,并向该微流体通道内输送流体;该微流体通道内输送的流体 的量受眼压影响,内圈电容的电容值随该微流体通道内输送的流体的 量的变化而变化;通过边缘电容、螺旋电感和内圈电容构成的 CLC 回 路,实现对眼压的检测。本发明中的眼压检测传感器能够有效解决眼 压传感器不便于夜间监测的问题,实现高精度的、24&
华中科技大学 2021-04-14
一种压电与光电复合的流体流速流向测量装置及其方法
本发明公开了一种压电与光电复合的液体流速流向测量装置及 其方法,装置包括圆柱体,压电纤维束,激光发射准直模块,弹性阻 尼体,底座,二维 PSD 位移传感器,PSD 承载及信号放大电路板,以 及测量数据处理模块;本发明利用弹性圆柱体以及安装在圆柱体内部 中心轴线区域的压电纤维束,将流体的流动转换为浸入流体中的圆柱 体的偏转运动,以及压电纤维束随圆柱体偏转产生压差,利用圆柱体 的偏转与流体流向的关系,以及压电纤维束压差与流体流速的关系, 实现流体的流速和流向的测量。本发明结
华中科技大学 2021-04-14
一种压电与光电复合的流体流速流向测量装置及其方法
本发明公开了一种压电与光电复合的液体流速流向测量装置及 其方法,装置包括圆柱体,压电纤维束,激光发射准直模块,弹性阻 尼体,底座,二维 PSD 位移传感器,PSD 承载及信号放大电路板,以 及测量数据处理模块;本发明利用弹性圆柱体以及安装在圆柱体内部 中心轴线区域的压电纤维束,将流体的流动转换为浸入流体中的圆柱 体的偏转运动,以及压电纤维束随圆柱体偏转产生压差,利用圆柱体 的偏转与流体流向的关系,以及压电纤维束压差与流体流速的关系, 实现流体的流速和流向的测量。本发明结构简单,体型小巧,可以减 少对
华中科技大学 2021-04-14
喷嘴喷射独立可控的阵列化电流体喷印头及其实现方法
本发明公开了一种喷嘴喷射独立可控的阵列化电流体喷印头, 包括设置在阵列化喷嘴与接收板之间的导引电极层,该导引电极层上 设有与喷嘴数目对应的多个圆孔,各圆孔的中心与喷嘴的中心共线, 在导引电极层上的各圆孔外周均同轴环绕有一圈导电环,且各导电环 均与一个电压源连接,阵列化喷嘴与喷射电压源相连,通过调整各个 电压源处合适电压值使得需要喷印的喷嘴与对应的导电环形成的电压 差大于其他喷嘴电压差,进而使待喷射喷嘴处的场强大于喷射启动所 需场强,其他不喷射的喷嘴处场强小于喷射启动所需场强,即可实现 各喷嘴的独立控制。本发明还公开了其实现方法。本发明可以解决目 前存在的对喷印头独立喷射控制存在的结构复杂、无法大规模集成使 用的问题。 
华中科技大学 2021-04-11
一种基于格子‑玻尔兹曼模型的油层流体模拟方法
本发明公开了一种基于格子‑玻尔兹曼模型的流体模拟方法。所述模拟方法包括,将多孔介质的图像网格化,用 fi(x,y,t)表示网格点 I(x,y)处,运动速度为 ci 的粒子所对应的粒子分布;判断粒子运动方向 ci 是否朝向固壁边界,是则令粒子分布fi(x,y,t)执行反向函数,否则对fi(x,y,t)执行格子‑玻尔兹曼模型的碰撞函数,然后根据演化后的粒子分布fi(x,y,t)获得流体密度ρ’(x,y)和流体速度 u’(x,y);直至满足演化结束条件。
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 16 17 18
  • ...
  • 159 160 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1