高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
2.92高频SMA连接器微波同轴气密封接头
您也可以在淘宝网首页搜索“锦正茂科技”,就能看到我们的企业店铺,联系更加方便快速! 您也可以在淘宝网首页搜索“锦正茂科技”,就能看到我们的企业店铺,联系更加方便快速! ​
北京锦正茂科技有限公司 2022-04-20
一种去除水溶性有机污染物的有机膨润土的制备方法
本发明公开了一种去除水溶性有机污染物的有机膨润土的制备方法。包括如下步骤:1)将干燥、粉碎,过50-150目筛的膨润土原土,投加到浓度为0.5-2.0MOL/L的LICL溶液中,搅拌,经沉淀、过滤、洗涤、晾干,得到锂基膨润土;2)将上述锂基膨润土活化后,投加到浓度为5-10MMOL/L的阳离子表面活性剂溶液中,搅拌2-6小时,在25-80℃下老化6-12小时;3)将上述反应物经过滤、洗涤,在60~80℃下烘干,研磨,过60-100目筛,得到新型有机膨润土。本发明所制得的新型有机膨润土具有较大的内比表面积,能高效去除水中量大面广的水溶性难降解有机污染物,解决了常见有机膨润土难以去除水溶性有机污染物的难题,适合在污染控制领域特别是难降解有毒有害有机废水的处理中推广使用。
浙江大学 2021-04-11
用于同时去除水污泥中多种重金属的改性污泥活性碳
本发明公开了一种用于同时去除污水污泥中多种重金属的改性污泥活性炭,其原料组分及其重量百分比含量为海藻酸钠0.01~13.00wt%,污泥87.00~99.99wt%。制备步骤为:①制备海藻酸钠溶液;②制备污泥活性炭;③制备海藻酸钠改性污泥活性炭。本发明首次采用天然高分子材料海藻酸钠改性污泥活性炭,并将其用于同时去除污水污泥中多种重金属的改性污泥活性炭。
天津城建大学 2021-01-12
一种用于去除剩余污泥中重金属的电化学方法
本发明公开了一种用于去除剩余污泥中重金属的电化学方法,其特征在于,具体包括如下步骤:取含有重金属的干污泥,分别采用0.1mol/L?EDTA、柠檬酸、酒石酸和EDTA铁钠为修复剂,超声波振荡7h,用盐酸调节pH值至2-4后,置于以石墨为电极的电化学装置,控制电压为3.5V,极板间距为14cm,电化学处理12h,取样烘干消煮,检测污泥中剩余重金属含量。采用本发明耗电低,电解时间短,节省时间,在较宽pH范围内,剩余污泥中重金属均小于限值,电极电压稳定,性能可靠,对污泥中重金属的去除率能达到90%以上,重金属富集在阴极处,易处理,不产生二次污染,且不产生任何有害因素,处理后的污泥符合污泥农用标准,可作肥料。
青岛农业大学 2021-04-13
一种用于去除蚕沙中重金属镉的电化学方法
本发明公开了一种用于去除蚕沙中重金属镉的电化学方法,其特征在于,具体包括如下步骤:取含重金属镉的蚕沙,分别采用0.1mol/L?EDTA、柠檬酸和醋酸作为提取剂,用盐酸调节pH值至2-6后,置于以石墨为电极的电化学装置,控制极板间距为14cm,距阳极10cm处设置一层阳离子交换膜,控制电压梯度为0.5V/cm-1.5V/cm电化学处理10h。采用本发明耗电低,适用pH范围较宽,电解时间短,节省时间,阳离子交换膜均匀,电极电压稳定,性能可靠,对蚕沙中重金属Cd的去除率能达到63.4%以上,采用本发明重金属Cd富集在阴极处,易处理,不产生二次污染,且不产生任何有害因素,处理后的蚕沙可作药用或肥料。
青岛农业大学 2021-04-13
超大直径法兰盘磁性液体静密封装置
本发明属于机械工程密封技术领域,特别适用于对直径大于 800 mm 的密封件的静态真空密封或正压密封。 本发明所要解决的技术问题是,现有超大直径法兰盘真空密封的方法存在着泄漏,使用寿命短等一系列弊病,因此,提供一种橡胶密封和磁性液体密封组合的超大直径法兰盘磁性液体静密封装置。 本发明的技术方案:密封装置由磁性液体密封和橡胶密封两部分组成,内部靠橡胶密封圈达到一定的密封能力,主要靠外部的磁性液体密封达到零泄漏;通过这两重密封就可以达到超大直径静密封的超高真空或正压密封的要求。 超大直径法兰盘磁性液体静密封装置包括:法兰盘、套、橡胶圈、永磁铁、磁性液体、极靴。在法兰盘的第一阶台阶、第二阶台阶上安装一个采用非磁性材料制成的套,紧靠套在橡胶密封台上嵌入橡胶密封圈,安装上套和橡胶密封圈的法兰盘和另一个法兰盘通过螺栓固定在一起后,在极靴处注入磁性液体,最后将多个圆柱形永磁铁嵌入沿两个法兰盘的第四阶台阶的圆周上,磁性液体在磁场的作用下吸附在密封间隙中,形成可靠密封。 本发明的有益效果是,采用磁性液体密封和橡胶密封组合一起的超大直径法兰盘静 密封,其泄漏率低于 10-11pal·m3/s,使用寿命长,而且装配方法简单,同时具有磁性液体密封和橡胶密封的优点,克服了原有密封的弊端,而且不破坏原有的其它结构。
北京交通大学 2021-02-01
密封件及其防松弛元件生产技术及装备
1. 项目概述随着我国石油、化工、核能、电力等工业的飞速发展,设备和管道法兰连接系统对静密封元件如缠绕式垫片、柔性石墨复合垫片等需求量与日俱增。密封元件的质量好坏会直接影响生产装置的安全运行和操作人员的安危,尤其在高温、高压、易燃、易爆和剧毒介质工况下密封元件的失效会导致严重事故。本研究室经过多年研究和不断改进,开发出密封元件分级制造新技术以及工艺参数可控制的国内最先进的静密封件生产装备,包括新型缠绕机、金属包复垫滚压成型机、石墨复合垫剪圆及包边机等。采用上述技术和装备可生产出满足不同工况条件的高质量静密封产品。此外开发了高温连接用防松弛技术及其相应的元件,提供成熟的产品设计和制造技术。2. 技术优势生产的各种静密封件其性能指标,包括压缩回弹率、泄漏率、应力松弛率、外观质量均符合国标规定的要求。按照连接结构紧密性要求对防松弛元件进行设计。提供性能检测与评价服务,提供相关标准。原化工部静密封检测中心挂靠单位、20多个国家标准和行业标准起草单位全国管路附件标准化技术委员会委员、化学工业专用密封标准技术委员会委员单位。
南京工业大学 2021-04-13
超大直径法兰盘磁性液体静密封装置
本发明属于机械工程密封技术领域,特别适用于对直径大于800 mm的密封件的静态真空密封或正压密封。 本发明所要解决的技术问题是,现有超大直径法兰盘真空密封的方法存在着泄漏,使用寿命短等一系列弊病,因此,提供一种橡胶密封和磁性液体密封组合的超大直径法兰盘磁性液体静密封装置。 本发明的技术方案:密封装置由磁性液体密封和橡胶密封两部分组成,内部靠橡胶密封圈达到一定的密封能力,主要靠外部的磁性液体密封达到零泄漏;通过这两重密封就可以达到超大直径静密封的超高真空或正压密封的要求。 超大直径法兰盘磁性液体静密封装置包括:法兰盘、套、橡胶圈、永磁铁、磁性液体、极靴。在法兰盘的第一阶台阶、第二阶台阶上安装一个采用非磁性材料制成的套,紧靠套在橡胶密封台上嵌入橡胶密封圈,安装上套和橡胶密封圈的法兰盘和另一个法兰盘通过螺栓固定在一起后,在极靴处注入磁性液体,最后将多个圆柱形永磁铁嵌入沿两个法兰盘的第四阶台阶的圆周上,磁性液体在磁场的作用下吸附在密封间隙中,形成可靠密封。本发明的有益效果是,采用磁性液体密封和橡胶密封组合一起的超大直径法兰盘静密封,其泄漏率低于10-11pal·m3/s,使用寿命长,而且装配方法简单,同时具有磁性液体密封和橡胶密封的优点,克服了原有密封的弊端,而且不破坏原有的其它结构。
北京交通大学 2021-04-13
铝合金密封结构局部火焰加热超声波钎焊方法
本发明公开了一种钛铝合金超细粉末的制备方法,其技术方案是选择成分达标、直径3mm和6mm的钛铝合金棒材作为原材料,采用脉冲电火花加工机,在合适的脉冲宽度和脉冲间隔参数下,于液氩中对钛铝合金棒材进行一次加工得到钛铝合金超细粉末,而后采用真空低温干燥得到纯净的钛铝合金超细粉末。钛铝合金超细粉末广泛的应用于钛铝合金粉末冶金制备行业,钛铝合金材料广泛应用于航空、航天、汽车、冶金等。
西南交通大学 2016-10-24
摇摆式啤酒盖用高分子密封材料研发
项目背景:摇摆式啤酒密封盖是高端啤酒的标配如弗林博 格、百威等欧美高端啤酒产品,国内高端啤酒瓶盖市场规模已达 十亿人民币左右。目前,应用于高端啤酒密封盖的高分子密封材 料及其成型技术仍被德国等欧美厂家所垄断,相关瓶盖密封产品 严重依赖进口,且供应量有限,严重制约了国内高端啤酒产品的 发展。 所需技术需求简要描述:1.开发应用于摇摆式高端啤酒封盖 的高分子密封材料配方,解决瓶盖中密封件和瓶塞件及瓶体等部 分材料间的相容性和匹配性难题;2.对摇摆式啤酒瓶密封盖进行 相关蜜粉机械结构的优化设计、制造工艺的研究,实现瓶盖一体 化注塑成型;研制质量检测系统(密封性等)装置,为实现业化 工摇摆式啤酒瓶密封盖奠定基础。3.满足食品安全的国标要求, 不含易迁移的溶剂和小分子添加剂,进一步满足美国 FDA 认证要 求:水蒸气透过系数< 1*10-4 g.cm(cm2.s.Pa)-1,酒精透过系 数<1*10-4 g.cm(cm2.s.Pa)-1,透气系数<1*10-17m2s-1Pa。  对技术提供方的要求:1.具备啤酒盖密封的高分子材料研发 能力和经验,已在高分子材料领域取得国内领先的研究成果; 2.具有相关密封结构和检测实力研发队伍。 
青岛金恒智造科技有限公司 2021-09-03
首页 上一页 1 2
  • ...
  • 7 8 9 10 11 12 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1