高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
新型显示器件高分辨率喷印制造技术与装备
我国新型显示产业规模和在建产线均居世界第一,但主要核心装备依赖进口,制约我国新型显示产业自主可控发展。新型显示器件向大尺寸、超高清、柔性化方向发展,其面临的重大挑战是如何在大面积柔性基板上实现纳米特征-微米结构-米级器件跨尺度高精度制造。光刻/蒸镀技术受限于模板尺寸和平面工艺,传统喷印受制于打印分辨率低(>20μm),均无法满足大尺寸/超高清/柔性化新型显示高精度/高效率/高可靠制造要求,急需发明新的制造原理、技术与装备。 针对新型显示器件高精高效制造国际难题,本项目原创高分辨率电流体喷印新原理,发明了电流体喷印新喷头、新技术和新装备,国际首创多款柔性新型显示器件并占领高端市场。 目前提出的“拉伸式”高分辨率电流体喷印新原理,实现<200nm结构的喷印制造,兼具按需点喷、射流直写、雾化制膜等不同喷射模式,突破了传统喷墨打印技术分辨率低、材料适用范围窄、喷射模式单一的问题。 本成果发明了阵列化独立可控电流体喷印系列喷头、高速视觉测量装置等核心装置与智能控制算法,开发了国际首台新型显示电流体喷印装备。部分核心专利作价3000万元实现成果转化,创新技术支持下开发的系列装备在显示龙头企业测试应用,实现了高分辨率OLED/QLED/PeLED(>300PPI)等新型显示器件集成制造。
华中科技大学 2023-04-24
微小型器件及微系统高加速度实验与标定技术(技术)
成果简介:利用高速旋转的转子产生的高离心力对在高承载环境下使用的器件进行加载试验,采用成熟试验技术方法和检测手段,实现对微小型机械结构件和电子器件、加速度传感器在高承载环境下的高载荷试验和标定。该设备最高加速度实验值:8万g,最高加速度标定值:1万g,实验对象最大回转半径:50mm,加速度实验精度:3%,标定精度:6%,实验对象尺寸:实验件最大尺寸长度≤18mm,实验件三维尺寸处于直径D=18,高度H=15的圆柱体范围里。适合钢、铝及铜质等各种材质加工的,在高承载环境下工作的机械结构件、电子元器件
北京理工大学 2021-04-14
功能油墨及柔性电子器件的印刷制造关键技术及应用
项目团队在印刷制造领域有多年的研究基础,形成“基础研究-关键技术-应用突破”的全链条研究方式,构建了印刷电子低成本制造技术及应用集成模式,发展了系列先进防伪功能油墨、高性能导电油墨和活性储能功能油墨,并实现了其在光学防伪、智能服装以及智能包装等领域的应用推广。 一、项目分类 关键核心技术突破 二、技术分析 项目团队在印刷制造领域有多年的研究基础,形成“基础研究-关键技术-应用突破”的全链条研究方式,构建了印刷电子低成本制造技术及应用集成模式,发展了系列先进防伪功能油墨、高性能导电油墨和活性储能功能油墨,并实现了其在光学防伪、智能服装以及智能包装等领域的应用推广,成果达到国际领先水平。发表SCI论文80余篇,出版专著4部,授权专利23项(发明专利20项)。本成果的关键技术与创新点主要体现在四个方面: (1)基于上/下转换多模式光学功能油墨化策略,发展了新型长效功能防伪油墨,将传统的单一颜色印刷光学防伪图案升级为全彩色防伪图像,在国际上率先实现了特定波长防伪和机密印刷图文信息隐藏与编码。实现了一系列包括近红外激发的多色可见上转换发光防伪功能油墨、紫外光激发多色下转换发光防伪油墨以及兼具上/下转换发光特性的防伪功能油墨的配制,能够满足多种印刷方式(丝网印刷、喷墨印刷以及R2R印刷),在多种包装基底材料上(PET、纸张、织物等)具有良好的印刷效果和防伪应用。 (2)创新的采用同时从电极结构内部和功能油墨外部优化的双重策略,利用大面积丝网印刷技术实现了柔性超级电容器的全印刷工艺制备,率先揭示了印刷工艺对器件性能影响的关键决定机制和内在工作机理。实现了多种高性能储能材料,如金属氧化物,导电聚合物,MOF类功能材料及其复合材料的制备与油墨化处理,所制备的印刷柔性超级电容器的比电容可达到16.8 mF cm-2(0.1 mA cm-2),同时具有长的循环稳定性(>5000次),优异的能量密度和功率密度(0.5 mW cm-2)。本项目提出的印刷电子技术代表了超级电容器制造业的一种范式转变,它为柔性超级电容器提供了一系列简单、低成本、省时、多功能和环保的制造技术,在未来电子产品中具有巨大的应用潜力。 (3)发展了系列功能传感油墨,实现了高度灵敏和循环稳定的柔性传感器的全印刷制造,揭示了功能导电油墨组分与配比对传感性能的影响规律以及印刷柔性传感器的传感机理,系统评估了印刷柔性传感器的传感性能,所制备的印刷传感器的应力传感范围可达到155%,最大灵敏度为6.3×104,最快响应速度可达到18 ms,循环稳定性>1000次,并且成功应用于运动、健康监测和智能包装中。 (4)完善了全印刷制造相关理论,解决了印刷制造薄膜类电子器件结构精度低共性问题,利用多种印刷技术实现了高性能柔性/可拉伸电极和柔性加热器件的图案化制造,研究并揭示了其运行工作机理,实现了部分印刷电子器件的集成与成果转化。
武汉大学 2022-08-15
废弃印刷线路板元器件无损拆解回收处理和再利用技术
研制开发并形成具有自主知识产权、环保、高效、可靠的废弃线路板无损拆解技术、粉碎技术、分离技术、再利用技术等相关技术,设计开发具有中国特色的废弃线路板回收处理及再利用整体工艺及生产线,实现对废弃线路板的无污染回收处理及再利用。该设备是一种环保、节能、高效的废弃线路板元器件无损拆解设备,由传动、加热、振动、除烟味等单元构成,该设备主机长为3.5m,宽0.8m,高为1.5m,生产能力为300~700块线路板/小时。在第三届北京发明创新大赛中,“线路板无损拆解设备”获得节能环保专项奖和大赛银奖。拆解效率高,温度可控,节能效果好,元器件无损拆解率高;设备环保;功率小,便于中小规模生产;加工操作简单;故障诊断、自我保护和声光报警功能。主要性能指标如下。1. 功率:4KW 2. 拆解率:98%3. 电压:220 4. 烟尘、气味:过滤效率99.9%5. 产量: 100~200 kg/h 6. 主机外形尺寸: 3500×80×1500 7. 整机重量:1.0台/t 废弃线路板基板的主要组成是纤维强化热固性树脂,由于热固性塑料本身的特点,除了焚烧回收热值,还有作为粉末用于涂料、铺路材料等重新利用,这些再生品质量低下、档次不高,而且在经济投资和资源利用方面也是不合理的。本项目根据废弃线路板基板原材料的不同,进行分别粉碎处理,将粉碎后的PCB粉末作为填料或增强体,以不饱和聚酯、环氧树脂等热固性材料作为基体,采用热压成型工艺,最终生产出多种复合材料,根据复合材料的不同性能,可以制成多种产品应用在广泛的领域里,代木、代钢、代塑、代瓷制品,所以具有明显的社会效益。该技术解决了固体废弃物带来的环境污染问题,又节约了一次资源,降低了制造成本,具有良好的环境、社会、经济三大效益。主要性能指标如下。抗弯强度/MPa 冲击强度/ Kg•m-2密度/ g•cm-3使用温度/℃ 成本价格/元/吨 废弃PCB粉体/短切玻璃纤维/不饱和聚酯150 17.92 1.59 50 4000 废弃线路板粉体/环氧树脂/偶联剂134.1 11.67 1.54 139.1 7000 申请专利:1. 吴国清,张宗科. 一种应用于废弃线路板无损拆解的处理设备及方法,专利号:200810224887.7 2. 吴国清,张宗科. 一种线路板夹具体,200810224853.8 3. 吴国清,张宗科,赵玉振. 废弃线路板的回收及再利用方法. 200910091996.0 4. 吴国清,赵玉振. 废弃电子元器件的回收及再利用方法. 200910091995.6 
北京航空航天大学 2021-04-13
sma-kyk2 高真空组件-直通头射频连接器-外螺内孔-锦正茂
您也可以在淘宝网首页搜索“锦正茂科技”,就能看到我们的企业店铺,联系更加方便快速! 您也可以在淘宝网首页搜索“锦正茂科技”,就能看到我们的企业店铺,联系更加方便快速! 您也可以在淘宝网首页搜索“锦正茂科技”,就能看到我们的企业店铺,联系更加方便快速!  
北京锦正茂科技有限公司 2022-07-22
BNC-50KY高真空转接头同轴射频连接器10mm穿墙式
您也可以在淘宝网首页搜索“锦正茂科技”,就能看到我们的企业店铺,联系更加方便快速! 您也可以在淘宝网首页搜索“锦正茂科技”,就能看到我们的企业店铺,联系更加方便快速! 您也可以在淘宝网首页搜索“锦正茂科技”,就能看到我们的企业店铺,联系更加方便快速!  
北京锦正茂科技有限公司 2022-04-08
压接型IGBT器件封装的电热力多物理量均衡调控方法
1. 高压IGBT器件封装绝缘测试系统 针对高压IGBT器件内部承受的正极性重复方波电压以及高温工况,研制了针对高压IGBT器件、芯片及封装绝缘材料绝缘特性的测试系统(如图1所示),可实现电压波形参数、温度和气压的灵活调控,用于研究电压类型(交、直流、重复方波电压)、波形参数、气体种类、气体压力等因素对绝缘特性,具备放电脉冲电流测量、局部放电测量、放电光信号测量、漏电流测量及紫外光子测量等功能(如图2所示),平台相关参数:频率:DC~20kHz,电压:0~20kV,上升沿/下降沿:150ns可调,占空比:1%~99%,温度:25℃~150℃,气压:真空~3个大气压。  2.压接型IGBT器件并联均流实验系统 针对高压大功率压接型IGBT器件内部的芯片间电流均衡问题,研制了针对压接型IGBT器件的多芯片并联均流实验系统(如图3所示),平台具有灵活调节IGBT芯片布局,栅极布线,温度和压力分布的能力,可开展芯片参数、寄生参数以及压力和温度等多物理量对压接型IGBT器件在开通/关断过程芯片-封装支路瞬态电流分布影响规律的研究,以及瞬态电流不均衡调控方法的研究;平台相关参数:电压:0~6.5kV,电流:0~3kA,温度:25℃~150℃,压力:0~50kN。   图3 压接型IGBT多芯片并联均流实验 3.高压大功率IGBT器件可靠性实验系统 随着高压大功率 IGBT 器件容量的进一步提升,对其可靠性考核装备在测量精度、测试效率等方面提出了挑战。针对柔性直流输电用高压大功率 IGBT 器件的测试需求,自主研制了 90 kW /3 000 A 功率循环测试装备和100V/200°C高温栅偏测试装备(如图4所示)。功率循环测试装备可针对柔性直流输电中压接型和焊接式两种不同封装形式的IGBT开展功率循环测试,最多可实现12个IGBT器件的同时测试。电流等级、波形参数、压力均独立可调,功率循环周期为秒级,极限测试能力可达 300 ms,最高压力达220 kN,虚拟结温测量精度达±1°C,导通压降测量精度达±2mV。高温栅偏测试装备可实现漏电流和阈值电压的实时在线监测,最多可实现32个IGBT器件的同时测试。 4. 压接器件内部并联多芯片电流及结温测量方法及实现 高压大功率压接型IGBT器件内部芯片瞬态电流及结温测量是器件多物理量均衡调控及状态监测的基本手段,针对器件内部密闭封装以及密集分布邻近支路引起的干扰问题,提出了PCB罗氏线圈互电感的等效计算方法,实现了任意形状PCB罗氏线圈绕线结构设计,设计了针对器件电流测量的方形PCB罗氏线圈(如图5所示),实现临近芯片电流造成的测量误差小于1%;针对器件内部多芯片并联芯片结温测量,提出了压接型IGBT器件结温分布测量的时序温敏电参数法,通过各芯片栅极的时序单独控制(如图6所示),在各周期分别进行单颗IGBT芯片结温的测量,进而等效获得一个周期内各IGBT芯片的结温分布。在此基础上,完成了集成于高压大功率器件内部的多芯片并联电流测试PCB罗氏线圈以及时序温敏电参数测量驱动板的设计(如图7所示)。 5. 自主研制高压大功率电力电子器件 面向电力系统用高压大功率电力电子器件自主研制的需求,开展了芯片建模与筛选、芯片并联电流均衡调控、封装绝缘特性及电场建模以及器件多物理场调控等方面工作,相关成果支撑了国家电网公司全球能源互联网研究院有限公司3.3kV/1500A、3.3kV/3000A以及4.5kV/3000A硅基IGBT器件的自主研制,并通过柔直换流阀用器件的应用验证实验,同时也支撑了世界首个18kV 压接型SiC IGBT器件的自主研制。
华北电力大学 2021-05-10
一种基于紫外光激发的白光发射器件及其制备方法
本发明涉及一种半导体发光与显示器件的制备方法,具体地说,是涉及一种基于紫外光激发的白光发射器件及其制备方法,属光电集成技术领域。该制备方法包括如下步骤:清洗硅片、在清洗后的硅片上制备多孔硅、在多孔硅上沉积氮化铝薄膜、用紫外光照射氮化铝薄膜,得到在可见光区发光的白光发射器件。 技术推广意向:半导体发光与显示领域技术创新:本发明具有如下的有益效果:器件结构简单,无污染,制备成本低;不需要荧光粉,发光效率高;发光性能稳定,光谱波长范围宽。
江苏师范大学 2021-04-11
一种用于高可靠性WLCSP器件焊接的无铅钎料
本发明公开了一种用于高可靠性WLCSP器件焊接的无铅钎料,属于金属材料类及冶金领域钎焊材料。该种无铅钎料中的纳米Al颗粒的含量为0.01~1%,纳米CeO2的含量为0.01~1%,Ag的含量为0.5~4.5%,Cu的含量为0.2~1.5%,余量为Sn。使用市售的Sn锭、Sn-Cu合金、Sn-Ag合金,按设计所需成分配比,预先熔化,然后加入纳米颗粒,采用高能超声搅拌的制造工艺冶炼无铅钎料,为防止元素的烧损在惰性气体保护气氛中冶炼、浇铸成棒材,然后通过挤压、拉拔即得到所需要的钎料丝材,也可将新钎料制备成焊膏使用。本无铅钎料对应无铅焊点的抗疲劳特性和抗跌落特性得到显著提高。 
江苏师范大学 2021-04-11
一种基于纳米压电纤维的柔性能量捕获器件及其制备方法
本发明公开了一种基于纳米压电纤维的柔性能量捕获器件及其 制备方法。所述器件自下而上依次包括:柔性基材、电极层、压电纤 维层、保护层;所述柔性基材为柔性绝缘塑料薄膜;所述压电纤维层 为 PVDF 纤维。通过采用柔性基材,采用照相制版工艺制备梳状电极, 并选择合适的静电纺丝参数沉积 PVDF 压电纤维,无需再对压电纤维 进行极化,使纤维整齐排列、减小纤维缺陷,能够简化纳米压电纤维 能量捕获器件制备工艺,提高能量转换效率,尤其是对弯曲运动机械 能的捕获效果。 
华中科技大学 2021-04-11
首页 上一页 1 2
  • ...
  • 33 34 35
  • ...
  • 45 46 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1