高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
城市污水培养微藻制备生物能源
利用市政污水培养产油微藻可有效解决环境水污染和能源危机的双重挑战:微藻能够利用市政污水中的碳、氮、磷等营养物质进行生长,并在细胞内积累油脂。降解污水中的污染物的同时提供了生产生物柴油的原料,极大限度地降低生物柴油的生产成本和污水处理厂的运营成本。通过对微藻能源生产工艺进行中试,构建微藻能源规模化集成系统,以实现各个单元之间高效率的耦合。其主要流程为:微藻培养、微藻收获、微藻油脂提取与转酯化。
哈尔滨工业大学 2021-04-14
生物质热解油高值化转化技术
一、项目分类 关键核心技术突破 二、成果简介 生物质能是指从生物质获得的能量,具有分布广、可再生、可存储、储量大和碳平衡等优点。生物质热解液化技术是生物质能的有效利用途径之一,具有广泛的应用前景。本技术研究工作和成效如下:1)采用低温预裂解和中温重整的两段式重整制备富氢气体和碳纳米管共产物的新方法,通过强化热裂解阶段重质组分定向转化与重整段聚合反应调变,实现碳纳米管产量增加,氢产量同步提高;2)引入电催化体系用于生物油全组分精制提质,提出了抑制析氢、直接还原等副反应的传质传荷协同强化方法,开发了原理样机;3)提出动态适应生物油组分特性的高值化转化技术匹配策略,指导制定实现生物油产业化应用的最佳技术路线。
华中科技大学 2022-07-26
一种新型磷酸钙生物活性陶瓷
本实用新型公开了一种磷酸钙生物活性陶瓷,所述包括多孔磷酸钙陶瓷基体和纳米改性层,所述纳米改性层为纳米晶磷酸钙。所述多孔磷酸钙陶瓷基体表面通过改性处理自组装形成一层纳米磷酸钙,从而使材料表面/界面具有较大的比表面积,利于吸附成骨相关蛋白和细胞,材料植入体内后能快速释放钙、磷离子,促进新骨形成,进而使材料具有更好的生物活性和骨诱导性,同时该陶瓷具有更好的力学性能。
四川大学 2016-10-20
基于生物材料的纳米药物基础与转化研究
载药量高达到400%(w/w)的多功能纳米载体 一、项目分类 重大科学前沿创新、关键核心技术突破、显著效益成果转化 二、成果简介 南京大学医学院胡一桥教授和吴锦慧教授科研团队,围绕生物材料的理化及生理特性,聚焦药物临床治疗的关键科学问题和难题,首创“单元-多维”生物材料成形理论,突破了“超强疏水/高比重”物质的高效负载、体内传输、体外贮存三大关键科学技术难题,构建了载药量高达到400%(w/w)的多功能纳米载体。 研究成果发表在Nature BME,Nature Communication、PNAS、Science Advances上,并获得教育部技术发明一等奖、教育部自然科学一等奖、江苏省发明专利金奖。据此项研究成果,建立了“Bottom-Up”的规模化制备生物纳米药物的生产线,完成了以蛋白类生物材料为载体的抗肿瘤靶向药物的规模化制备和临床研究,相关药物1项在临床试验,1项获得NMPA的批准上市。有效的解决了进口类似品种价格高,患者无法承受的问题。
南京大学 2022-08-12
生物质固废资源化技术研发及应用
一、项目分类 显著效益成果转化 二、成果简介 南开大学(天津市生物质类固废资源化技术工程中心)的“生物质固废资源化技术研发及应用”项目属于生物质固体废弃物处理处置领域(环境保护专业)。该项目成果经天津市科学技术评价中心组织的以院士为主任的鉴定委员会鉴定,结论是“该项目达到国际领先水平”。 1、主要研究内容 (1)开发了可降解生物质固废(园林绿化垃圾、秸秆、禽畜粪便等)的微生物菌剂和除臭技术,可将生物质固废在5-10天内快速转化为复合微生物有机肥,其各项指标均达到或优于国家农业部标准(NY525-2012、NY884-2012)。 (2)研发的酵母菌剂能有效利用玉米芯、秸秆等农业固废,通过生物发酵技术提高了饲料中蛋白含量并改善饲料适口性。 (3)开发了能在6小时内将厨余垃圾减量化80%以上的无臭降解技术,该技术达到国际领先水平。 (4)开发了新型设施化蚯蚓养殖技术及装置,有效提高蚯蚓养殖效率,提高蚯蚓品质,降低人力成本。 (5)设计功能化离子液体用于提取秸秆、园林绿化垃圾等生物质固废中纤维素,以及离子液体催化水解纤维素生产化工基础原料5-羟甲基糠醛。 (6)研发了多种基于生物质的防结焦、防结渣添加剂和清洁燃料,开发了生物质锅炉系统,有效降低 SO2的排放。 (7)根据微生物降解菌群及酵母菌群的生长、代谢特征,开发了基于太阳能技术的生物反应装置,大幅提升了资源利用效率。 2、经济社会效益 本项目以生物质固废为原料,开发了有机肥生产技术、饲料生产技术、高效纤维素提取技术、绿色5-羟甲基糠醛合成技术。本项目的核心技术已被天津、山东、江苏、深圳等省市14家企业应用,近三年累计销售收入1.03亿元。 本项目的实施,对区域的循环经济产业示范和节能减排起到了积极的推动作用。
南开大学 2022-07-28
生物质糠醛基聚合物单体合成技术
糠醛来源于自然界的C5糖,是已大规模工业化生产的生物质基化工产品,其原料来源是农业和林业的废料,包括玉米芯、稻壳、木材废料等。由于这些可再生资源数量非常庞大,且其综合利用不与人类竞争粮食,通过它们生产糠醛,进而发展生物质糠醛基化工产品具有非常大的潜力。 一、项目分类 关键核心技术突破 二、成果简介 随着碳中和概念的提出,生物基材料,乃至生物基可降解材料,凭借其良好的环保特性而受到人们的广泛关注。糠醛来源于自然界的C5糖,是已大规模工业化生产的生物质基化工产品,其原料来源是农业和林业的废料,包括玉米芯、稻壳、木材废料等。由于这些可再生资源数量非常庞大,且其综合利用不与人类竞争粮食,通过它们生产糠醛,进而发展生物质糠醛基化工产品具有非常大的潜力。关键挑战在于糠醛是单官能团化的化合物,在聚合物工业中难以发挥重要作用,因此尽管其生产原料广泛、工业生产技术成熟,但市场容量非常有限,严重限制了以糠醛为基础原料的聚合物工业应用。
华中科技大学 2022-07-27
膜表面生物活性纳米材料真菌疏水蛋白
项目的背景及主要用途: 真菌疏水蛋白是由丝状真菌在生长的特定时期分泌的一类具有特殊理化性质的分泌型的小分子量、疏水性蛋白质,它们可以通过自我装配在两相界面形成两亲性蛋白膜,改变介质表面的亲水性和疏水性,是已知表面活性最高的蛋白之一,有着很高的理论价值和应用价值。 真菌疏水蛋白是纯天然生物提取制品,无毒害,无污染;耐酸碱,抗相变能力强。自我装配形成有活性的蛋白膜,具有良好的热稳定性和透气不透水性。由于它的特性,使得它具有众多优点:(1)自
南开大学 2021-04-14
微生物菌制剂处理粪便、净化养殖水
微生物菌制剂处理禽畜粪便,使禽畜粪便无臭味,进一步把大分子有机物发酵降解为小分子有机物,使植物更容易吸收利用。在高温发酵阶段温度可达60~70℃,经过发酵处理的鸡粪变为无病毒、无虫卵、无害虫的卫生肥料。变臭粪为绿色食品生产的上等肥料,既改善环境又增加了有机肥资源。特别适合养鸡户多的县,或者大的养鸡厂,具有很高的经济效益、环境效益。微生物菌制剂净化养殖水,也可以净化景观用水,比如旅游地的湖泊、水库、河流受到污染,或者城市公园的水富营养化等都可以用本菌制剂治理,达到污水变清、保护水资源的
南开大学 2021-04-14
发酵肉制品中生物胺的来源与控制
该研究集中于探索发酵肉制品中生物胺的检测、主要来源以及控制措施。研究建立了用液相色谱检测常见生物胺的方法。研究还发现,在肉制品发酵成熟阶段存在于其中的生物胺产生菌是生物胺的“主要贡献者”,通过添加发酵剂可以有效控制发酵肉质品种生物胺的产生。研究结果为肉制品生产者控制生物胺的产生提供了有效的方法。
上海理工大学 2021-01-12
酸催化生产生物质炭技术简介
人类在发展过程中目前面临能源危机和环境污染双重压力。在能源消费方面,目前世界能源消耗91%的是一次性矿物燃料能源,但矿物燃料是有限的,不可能成为人类的永久性能源。因此寻找可替代化石能源的新能源是人类可持续发展的必由之路。 据估计,全世界每年由光合作用而固定的碳达2×1011 吨,含能量达3×1018 千焦,可开发的能源约相当于全世界每年耗能量的10 倍;生成的可利用干生物质约为1700 亿吨,而目前将其作为能源来利用的仅为13 亿吨,约占其总产量的0.76%,生物质资源开发利用潜力巨大。据测算,我国拥有的生物质能资源为50 亿吨左右,是我国目前总能耗的4 倍左右[5]。生物质资源虽然丰富,但由于保存和转化的技术落后导致生物质资源浪费严重,如秸秆等农业废弃物在田间焚烧,林业产品加工产生的木屑、锯末等被直接丢弃,食品加工的壳、皮等被当作垃圾填埋,这不仅污染了环境,还造成了生物质资源的巨大浪费 利用生物质制备炭材料,在能源领域利用可以直接作为燃料使用,可以避免生物质原料本身能量密度低、体积庞大难于运输等弊端,同时相对于燃煤可以减少硫排放,从而减少对环境的污染,但目前制造成本高,只有在特定的场合才使用,目前生物质炭在能源方面主要作为高端的燃料电池正极材料。另一方面生物质炭本身的多孔性致使它具有巨大的比表面积、发达的孔隙结构以及较好的化学稳定性和机械强度,在环保领域对重金属良好的吸附性能,因此对重金属废水处理及土壤恢复与改良具有巨大的应用潜力[8-14]。 由于传统工艺制造活性炭成本高,因此限制了其应用范围。如何最大限度降低制造成本是科研工作必须努力的方向。 生物质炭的制备方法主要分为:热分解法,微波炭化法,水热炭化法。热分解炭化法是目前制备生物质炭的主要方法,热分解制备生物质炭是在隔绝空气条件下生物质的高温裂解成炭,一般需要炭化与活化两个过程且二者可分步或同步进行。首先炭化过程是在300 –1000 0C下使生物质中分子链中C-O、C-C键断裂成炭,随着温度的升高, 生物质炭的产量降低, 含碳量逐渐增加。活化的目的是利用气体或化学物质改变炭化料的内部结构, 扩大孔体积, 增加活性炭的吸附性能。物理活化采用如水蒸气、空气、CO2进行活化;化学活化则采用化学物质如NaOH,ZnCl2,KOH, K2CO3等在600~11000C下活化,得到活性生物质炭产品。热分解法的缺点在于反应时间长,反应耗能大,传热效率低和反应原料加热不均匀等。微波炭化法则是通过被加热体内部偶极分子的高频往复运动,使分子间相互碰撞产生大量摩擦热量,继而使物料内外部同时快速均匀升温从而达到裂解及炭化的目的。微波加热具有操作简单、升温速率快、反应效率高、可选择性均匀加热等优点。生物质通过微波炭化处理其活性炭得率较高(一般达到40%左右)且表面积大。但微波炭化的不足在于物料的反应温度不能精确控制,过量的微波辐射将对人体健康有损害且工业化放大过程比较困难。水热炭化法是在一定温度(一般200 ℃)和压强(下将水热反应釜内的生物质( 碳水化合物、有机分子和废弃生物质等) 、催化剂和水进行加热,实现对生物质炭化的过程。水热炭化一般制得的生物质表面积小一般500m2/g以下,同时反应时间长,因此生产成本较高。 总之制备生物质炭材料具有丰富的原料来源,同时在能源及环境方面具有广阔的应用前景,尤其在重金属污染治理及土壤恢复及改良前景更为广阔。但目前生物质转化为炭流程长,分解温度高,造成生产成本高而致使生物质的利用率低。如何更高效、成本更低廉实现生物质的炭转化,无论对于人类能源结构优化及环境保护均有十分重要的现实意义。 本项目提出了一种酸催化裂解炭化生物质原料的方法,采用酸催化直接将生物质分解及炭化,并在低温下(2000C左右)加速炭化及活化(6000C以下) 过程,吸收炭化及活化过程蒸发的酸及液态有机物,酸进行循环利用,实现生物质炭材料绿色制备。由此可以制备出生物质炭材料比表面在1000m2/g以上,得率达到50%以上,从而降低生物质炭的制造成本,拓宽其应用范围。二.技术路线酸催化生产技术路线见下图,生物质粉碎后,采用一定酸浸湿润,干燥后进行炭化及活化,控制在4000C下炭化完全冷却,炭化活化过程进行酸回收并返回使用,炭化完全后冷却,加粘结剂压块便得到生物质炭。  图1 酸催化制备生物质炭工艺流程三.技术开发内容及指标技术开发内容生物质原料的筛选及酸种类的筛选温度、时间工艺参数的优化;粘结剂的选择与添加工艺确定日处理1吨中试放大设备选择与设计;技术指标生物质炭得率大于50%;生物质炭的碳含量高于80%;生物质炭燃烧后的灰分小于5%;生物质炭材料比表面在1000m2/g以上。四.经济效益初步分析生物质炭售价按3000元/吨计算,原材料及处理成本约1500元/吨;按年生产1万吨计算,年效益为=(3000-1500)x10000=1500万元。 本项目作为生物质炭新工艺相对于传统工艺,大幅度提高了生物质炭的转化效率及降低了生产成本,因此经济效益非常显著,如果作为活性炭使用效益更加显著。同时具有很好的推广前景。
清华大学 2021-04-13
首页 上一页 1 2
  • ...
  • 48 49 50
  • ...
  • 123 124 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1