高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
泉州水处理、莆田水处理、厦门水处理
产品详细介绍   反渗透是一种以压力为推动力的膜分离过程。随着膜性能的提高,反渗透技术将发展成为进行分离、分级、提纯和富集的化工分离新技术。     反渗透技术的主要特点: 能耗低 结构紧凑 操作简单易维修 自动程度高 不污染环境     反渗透技术广泛应用于给水处理;城市自来水的净化;制取电力、医药、医疗和食品等行业的纯水、超纯水、注射用水和食用纯净水的制备;海水和苦咸水的淡化制取饮用水等。     反渗透系统由反渗透装置及其预处理和后处理三部分组成。反渗透系统的核心是反渗透装置,预处理是反渗透装置能否长期稳定运行的前提,后处理用以满足不同处理对象的最终产水水质指标
泉州市大华膜科技有限公司 2021-08-23
面向高浓度有机废水处理的高效厌氧生物微流化床技术及应用
成果简介:  基于厌氧生物滤床(AF)的基本运行特征,引入低能耗气水混合动力,实现载体微流化,加强底物传质过程,显著提高厌氧生物代谢效率。 以载体类型、载体装填量、水力条件三因素交叉研究,探索出易于厌氧生物膜形成、高厌氧污泥浓度且载体微流化的高效厌氧反应模式。
南京工业大学 2021-01-12
一种生物电化学系统与UASB耦合的废水处理装置
本实用新型公开了一种基于阴极电势调控的生物电化学耦合上流式厌氧生物反应装置。该装置中,上流式厌氧生物反应器污泥层中设置环形电极,生物电极系统为所述的上流式厌氧生物反应器筒体内阴极附近的微生物提供能量较高的电子用于污染物的降解。参比电极通过紧固螺栓固定于生物阴极附近,并通过导线与在线检测仪和计算机连接,用于实时监测耦合反应器生物阴极的阴极电势。可根据不同污染物降解所需的吉布斯自由能通过能斯特方程计算反应所需的电势差,并通过调节生物电化学系统的外加电压将阴极电势控制在略低于所需电势差的范围内,达到低能耗,高效率地降解氯代硝基苯等难降解有机污染物的目的。
浙江大学 2021-04-13
一种重金属吸附饱和活性炭再利用的有机废水处理方法
本发明公开了一种重金属吸附饱和活性炭再利用的有机废水处理方法,首先将重金属吸附饱和活性 炭、过硫酸盐、工作电解质加入到含有机污染物的废水中,调节 pH 至 3~9,然后在 8~24mA/cm2 的电 流密度下进行电解处理;反应液中重金属吸附饱和活性炭的添加量为 0.125~0.500g/L,过硫酸盐浓度为 2.5~10.0mM。本发明采用重金属吸附工艺产生的饱和废弃活性炭作为催化剂,原料廉价易得;同时废弃 的饱和活性炭得到再利用,
武汉大学 2021-04-14
膜法养殖废水/农村污水处理技术
膜技术与生物处理技术相结合的膜生物反应器(MBR)处理工艺作为一种新的污水处理与回用技术,正日益受到国内外的广泛关注。MBR 由膜组件和生物反应器组成,可利用生物反应器中微生物的降解作用去除废水中的污染物,并在外界压力作用下使用膜组件的高效过滤截留性能,将大分子物质及活性污泥截留在反应器内,具有优越的固液分离能力。MBR 使污泥被截留,反应器内污泥浓度升高,停留时间变长,解决了传统活性污泥生物处理法中活性污泥沉降性能差的不足,实现了水力停留时间和污泥停留时间的分离和在实际中的分开控制,提高了生物反应
南京工业大学 2021-01-12
一种用于废水处理的磁性剥离型蒙脱土纳米复合材料的制备方法
(专利号:ZL 201410576782.3) 简介:本发明公开了一种用于废水处理的磁性剥离型蒙脱土纳米复合材料的制备方法,属于纳米复合材料制备技术领域。该方法通过在蒙脱土表面修饰上大量的羧基,采用原位化学反应将磁性纳米粒子引入蒙脱土层间并获得剥离型结构,结合四氧化三铁的磁分离性能和羧基修饰蒙脱土对有机阳离子染料及重金属离子的高吸附特性,获得可磁分离且吸附能力强的磁性剥离型蒙脱土纳米复合吸附材料。本发明制备工艺简单、条件可控,制得的磁性剥
安徽工业大学 2021-01-12
从含氯化铵工业废水中提取氯化铵技术
一、项目简介本项技术主要用于含氯化铵工业废水的综合治理。目前我国含氯化铵工业废水对环境的污染相当严重,包括无机化工、有机化工、稀土元素厂等,而工业废水处理又是很大的难题,一般企业的污水处理项目略微亏本或持平都属于好项目。本项技术采用水的闭路循环,蒸发出来的水经凉水塔冷却后循环使用,排放的废水是干净的冷凝水,可达标排放。 其“低温、多效、热泵蒸发和常温结晶”工艺和先进的降膜蒸发设备,使技术水平处于世界领先,并且已获发明专利。二、市场前景本项技术主要从含氯化铵的工业废水中提取氯化铵,不仅解决了工业污水对环境的污染。目前已经向河北、河南、山东、浙江、江苏、福建、山东、深圳、等省市和地区转让。社会效益和经济效益十分明显。技术成熟可靠。总之氯化铵的市场比较广泛,前景很好。三、主要设备及投资我们采用三效、热泵、真空、蒸发工艺,常温结晶工艺可以达到节能环保的要求,蒸发器采用钛材制造,使用寿命10年,使得设备投资相对降低。若是年产10000吨氯化铵的规模,投资将近1000万元人民币。四、效益分析  氯化铵属于无机盐类,主要用于农业化肥、金属焊接、电镀、鞣革、干电池、食品、医药等部门。特别是农业用化肥的用量较大。据调查,氯化铵很畅销。农用氯化铵的价格在500多元/吨,而江南的价格在600多万元/吨;成本价格在380元/吨左右。若年产氯化铵10000吨的规模,则年经济效益在120万元。若精致成工业级,其价格在1500元/吨。吨成本价格在700元左右。若精制成食品级或医药级氯化铵,则销售价格会比工业级的价格高出更多,还可出口创汇。经济效益会更高。五、合作方式  面议。  
河北工业大学 2021-04-13
络合萃取法处理工业含酚废水技术
工业中含酚废水来源甚广、危害极大。焦化厂、煤气站、化学化工厂、树脂厂、染料厂、制药厂、农药厂、香料厂及其他化工厂都会产生各类含酚废水。处理工业含酚废水,回收其中的酚类,时改善环境、造福人类、创造直接社会经济效益的重要任务。本项技术从基于可逆络合反应的有机物稀溶液萃取分离的基本原理出发,结合二十余个工业生产的实际废水体系的工艺研究,确定选用混合型络合萃取剂A-B-K和N-B-K,提出了络合萃取法处理工业含酚废水的新工艺及相应配套设备。实践证明,该技术具有分离因数高、操作简便、设备投资及操作费用少、酚类可回收复用和溶剂损失小等特点。对于化工类工业含酚废水采用A-B-K络合萃取剂,仅通过单一萃取操作、通过2~3级错流接触,均可达到国家规定的排放标准(残液含酚小于0.5ppm)。对于焦化厂含酚废水(中性或弱酸性),采用N-B-K络合萃取剂予以实施同样可以取得满意的处理结果。
清华大学 2021-04-10
工业冷却循环水处理专家系统
1.  项目概述当前制定冷却循环水处理方案的主要依据是“挂片实验”或“动态模拟实验”,然后留出很大的保险空间,根据经验确定最终的药剂投加量。很多情况下也
南京工业大学 2021-04-14
高浓度难降解工业废水超临界水氧化治理成套技术与装备
超临界水氧化技术是用于高浓度难降解有毒有机废水深度处理的一种高效技术。所用的氧化剂可以是纯氧气、空气或过氧化氢等。其工艺流程如图所示。用高压泵将废水打入热交换器,废水从换热器内管束中通过,之后进入缓冲罐内,同时启动氧气压缩机,将氧气打入氧气缓冲罐内。废水与氧气在管道内混合之后进入反应器,在超临界条件下,废水中的碳氢化合物被氧化分解成无害的CO2、H2O;含氮化合物被分解成N2等无害气体;S、P等元素则生成无机盐。由于气体在超临界水中的溶解度极高,在反应器中成为均一相,从反应器顶部排出;无机盐等固体颗粒在超临界水中的溶解度极低,沉淀于反应器底部。超临界水与气体的混合流体通过热交换器冷却后进入气液分离器进行分离。与常规的水处理技术相比,本技术具有明显的优越性:(1)氧化效率高,处理彻底,水溶液中有机物的去除率可达99.99%以上;(2)反应在密闭容器中进行,密封条件极好,有利于有毒、有害物质的氧化处理;(3)不产生二次污染,处理后的水直接排放或完全回用,节约了资源和能源;(4)应用范围广,几乎对所有有机污染物均可进行氧分分解;(6)由于均相反应停留时间短,反应器结构简单,使用较小体积的反应器就可处理较大流量的有机污染物,有利于工业运行。应用本技术时,需消耗一定的能量以加热废水及驱动高压泵,但废水中的含能物质COD在超临界状态下发生氧化反应时会放出一定的热量,为了降低过程的运行成本,本技术的应用与否取决于废水的COD浓度。研究表明,如果废水的COD小于30000 mg/L时,应用本技术时的运行成本较高,将达到150元/吨废水左右;如果废水的COD浓度为30000~45000 mg/L时,考虑到热量回收,其运行成本接近零;如果废水的COD浓度高于50000 mg/L时,考虑热量回收的价值,此时的运行成本将为“负值”,即在盈利状态下运行。这也是本技术与传统废水处理技术的最大区别:传统技术要求废水的污染越低越好,而本技术恰好相反,废水越污越好。采用本技术存在的最大问题在于过程中产生的腐蚀与盐堵问题。针对这种情况,我们进行了新型反应器的开发并申报了国家发明专利。目前,本技术已申请国家发明专利5项,获授权一项。本技术适用于高浓度难降解有毒有机工业废水,可广泛应用于化工、石油炼制、纺织印染、造纸、医药等行业。
南京工业大学 2021-04-13
首页 上一页 1 2
  • ...
  • 7 8 9
  • ...
  • 137 138 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1