高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
机械零件的动态特性设计和 NVH 匹配设计
机械零件的动态特性设计和 NVH 匹配设计
上海理工大学 2021-01-12
中草药碳点抗病毒研究
近日,国际学术期刊Small刊载了华中农业大学理学院梁建功教授课题组和动科动医学院肖少波教授课题组合作发表的题为“Glycyrrhizic‐Acid‐Based Carbon Dots with High Antiviral Activity by Multisite Inhibition Mechanisms”的研究论文,该研究合成了具有高生物相容性及高抗病毒活性的甘草酸碳点,并揭示了碳点的抗病毒机制。中草药在抗病毒领域具有广阔的应用前景,在最近爆发的新型冠状病毒肺炎的治疗过程中,中草药的参与度超过80%。然而,单一成分的中草药抗病毒效果往往不高,且存在一定的毒副作用,如何进一步提高中草药的抗病毒效果,降低其毒副作用,成为该领域需要解决的一个关键科学问题。甘草酸碳点抗病毒机制示意图该研究利用水热合成技术,成功将中草药甘草的活性成分——甘草酸转化为具有良好生物相容性及高的抗病毒活性的甘草酸碳点(Gly-CDs)。研究发现,Gly-CDs不仅可与病毒多靶点结合从而抑制病毒的入侵过程,还可通过刺激细胞天然免疫信号通路、抑制活性氧、调控细胞内宿主限制性因子等途径抑制病毒的复制过程,其对病毒的最大抑制效果可达5个滴度以上。Gly-CDs对猪繁殖与呼吸综合征病毒(动脉炎病毒科)、猪伪狂犬病毒(疱疹病毒科)及猪流行性腹泻病毒(冠状病毒科)均具有良好的抑制效果。华中农业大学理学院/资环学院博士研究生童婷为论文第一作者,梁建功教授、肖少波教授为共同通讯作者。该研究得到了国家自然科学基金(31490602, 31772785)及国家重点研发计划(2016YFD0500105)等基金的资助。
华中农业大学 2021-04-10
城市电磁环境监测公告点
本项目就是在城市特别是大城市的典型区域设立广谱的电磁环境监测点,对电磁环境进行实时监控,并通过显示牌显示给市民。这将十分有利于树立城市的形象,产生良好的社会效益。 本项目属世界首创,系由北京市自然科学基金重点资助完成。可根据各城市的不同特点和具体要求(如可为市民提供小型电器的电磁辐射自助检测等)进行再设计。监测点可设在城市的闹市区、居民区、电磁污染高疑区等市民关注度比较集中的地区。
北京交通大学 2021-04-13
免疫诊治靶点抗原性预测
本团队拥有生物信息学研究方向的成员,在致病微生物大数据处理方面具有扎实的理论基础与研究经验,善于利用生物信息学手段分析在人群中广泛流行的病原微生物,从而能够对疾病的防治起到预警作用。其主要工作成果在于流感病毒重要抗原性位点筛选,流感病毒抗原性距离预测,流感病毒流行性监控以及有 效疫苗株推荐等方面,具体阐述如下: (1)流感病毒重要抗原性位点筛选本工作首先对自 1968 年以来近五十年间的流行流感病毒株进行统计,分析了其主要抗原蛋白--血凝素蛋白上每个氨基酸位置的抗原性贡献
上海理工大学 2021-01-12
云上展厅已成功吸引1万余家企业入驻!
云上高博会 2025-02-10
一种超长金属工件的3D打印设备及打印方法
本发明涉及一种超长金属工件的3D打印设备及打印方法,属于3D打印技术领域。超长金属工件的3D打印设备的保护系统、冷却系统分别与真空装置相连;真空装置内设置机器人系统;送丝系统将打印金属丝料送至真空装置内并供应至机器人系统处;机器人系统与热源系统配合将印金属丝料进行热熔成型;牵引系统将真空装置内打印完成的超长金属工件牵引至真空装置外侧。本发明提供的超长金属工件的3D打印设备及打印方实现倾斜角度的切片和3D打印,通过对已成形工件的水平步进牵引,进行连续3D打印;解决传统金属材料增材制造方法无法打印超长工件的问题。
东南大学 2021-04-11
一种基于机器学习的空间数据匹配方法
本发明涉及一种基于机器学习的空间数据匹配方法,包括四个步骤:1)自动生成匹配训练样本,2) 通过机器学习建立分类器模型及其参数,3)应用分类器模型对输入空间数据进行目标匹配,4)顾及逻 辑和领域约束对匹配结果的过滤和改善。其中机器学习采用以空间目标的位置、大小、形状和方位等多 种指标作为特征提取。具有如下优点:可避免量纲标准化和多指标加权中的主观任意性,匹配精度较加 权平均方法更高;匹配模型基于样本数据学习建立,数据的自适应性较高;建立模型的典型样本数量少, 可大规模应用;利用空间数据的内在几何信息,无需额外属性信息,使用准入性低。
武汉大学 2021-04-13
基于光谱抽样直方图的超光谱降维匹配方法及系统
本发明提供一种基于光谱抽样直方图的超光谱降维匹配方法及系统,包括对待匹配光谱和光谱库中 的所有光谱分别进行归一化处理,分别获取归一化后的待匹配光谱和光谱库中所有光谱的抽样直方图, 计算待匹配光谱的抽样直方图与光谱库中所有光谱的抽样直方图的欧氏距离,在光谱库中选取与待匹配 光谱抽样直方图欧氏距离最小的一条光谱作为匹配对象。本发明通过对归一化后的光谱使用等间距的窄 带进行抽样,从而获得维数远小于原始光谱的抽样直方图,完成了光谱的降维,然后使用降维后的抽样 直方图代替原始光谱进行匹配,显著降低了后续匹配时的运算量,同时在抽样时利用分段提取的方法保 留了光谱图中的相对位置信息,提高了匹配的精度。
武汉大学 2021-04-13
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
首页 上一页 1 2
  • ...
  • 18 19 20
  • ...
  • 75 76 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1