高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种二氧化碳/二氧化硫钙基吸收剂及其制备方法
本发明公开了一种高性能二氧化碳/二氧化硫钙基吸收剂颗粒的制备方法,将含钙的前驱体和有机物溶于水中,将溶液在 60~90℃条件下持续搅拌成溶胶,经过 110~200℃干燥 1 小时以上得到干凝胶;再将干凝胶在 600~900℃条件下空气中煅烧 0.5 小时以上,得到白色钙基吸收剂粉;最后将粉末与水泥以及微量水混合成泥状后,经过挤压成型得到所需钙基吸收剂颗粒。有机物的燃烧可以使钙基吸收剂的表面具有丰富的孔隙,水泥的添加可
华中科技大学 2021-04-14
一种可同时吸收挥发性有机物并高效捕集细颗粒物的褶式滤筒
(专利号:ZL 201410258557.5) 简介:本发明公开了一种可吸收挥发性有机物并高效捕集细颗粒物的褶式滤筒,属于空气过滤领域。该褶式滤筒的过滤介质分为两层,靠近迎风面侧的一层为粗效或中效过滤介质,另一层为高效过滤介质,所述靠近迎风面侧的一层过滤介质中通过喷洒或浸渍方法浸渍了一定量的以活性氧化铝为载体的铁、银离子颗粒物;褶式滤筒的外径为160~350mm,滤筒外圆周上褶与褶间的弧长为3.9~4.5mm,褶高为褶数的18%~25%。
安徽工业大学 2021-01-12
一种基于开槽结构的四分之一模基片集成波导滤波器
本发明公开了一种基于开槽结构的四分之一模基片集成波导滤波器,包括四分之一模基片集成波导弧形腔,四分之一模基片集成波导弧形腔通过基片集成波导圆形腔沿任意两条相互垂直的磁壁分割得到,四分之一模基片集成波导弧形腔包括介质基片,介质基片的上表面设有上金属层,介质基片的下表面设有下金属层,介质基片中沿四分之一模基片集成波导弧形腔的周向均匀分布有贯穿上金属层和下金属层的金属通孔。本发明相对于传统的基片集成波导圆形腔有效实现了小型化。并且,相对于传统的多层结构,本发明结构简单,加工方便。此外,相对于传统的微带结构,本发明的滤波器品质因数高,损耗小。
东南大学 2021-04-11
一种通过scout ESI和CNN解码EEG运动想象四分类任务的新方法
导读东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法,以对运动想象(MI)任务进行分类。ESI技术采用边界元法(BEM)和加权最小范数估计(WMNE)分别解决EEG的正向和逆向问题。然后在运动皮层中创建十个scout来选择感兴趣的区域(ROI)。研究者使用Morlet小波方法从scout的时间序列中提取特征。最后,使用CNN对MI任务进行分类。实验结果:在Physionet数据库上的整体平均准确率达到94.5%,分别对左拳头、右拳头、双拳和双脚的单个准确率达到95.3%、93.3%、93.6%、96%,采用十倍交叉验证进行验证。研究人员表示,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者为验证方法的有效性,加入了4个新的受试者进行验证,发现总体平均准确率为92.5%。此外,全局分类器适应单一对象,整体平均准确率提高到94.54%。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。系统框架图1 系统框架图系统框架如图1所示。原始数据来自国际10-10系统的64个电极(不包括Nz、F9、F10、FT9、FT10、A1、A2、TP9、TP10、P9和P10电极),并以每秒160个样本的速度采集。根据国际10-10系统从64个通道采集原始脑电图,并使用BCI2000系统进行记录。记录的数据被分为四个独立MI任务包括左拳MI,右拳MI,双拳MI和双脚MI。首先,由于ERD在执行运动想象时在alpha和beta中不同,因此使用FIR滤波器对EEG进行了8 Hz至30 Hz的带通滤波。然后,通过计算包含正问题和逆问题的源,将传感器空间的活动转化为源空间的活动。接下来,创建scout并提取特征。研究者在运动皮层中创建了10个scout,因为我们只关心与运动相关的活动。十个scout中的每一个都代表了可用源空间中的一个感兴趣的区域(ROI),并且是定义在皮层表面或头部体积上的偶极子的子集。左脑的scout称为L1、L2、L3、L4、L5,右脑的scout称为R1、R2、R3、R4、R5。利用JTFA从10个scout的源时间序列中提取特征。最后,利用CNN对时频图进行分离并进行分类。实验在实验中,研究人员仅使用了随机选择的十个受试者的MI trail (S5,S6,S7,S8,S9,S10,S11,S12,S13,S14)。这里用于分析的数据集包含每个受试者84次试验,每一类包含21次试验。在记录64通道脑电图时,受试者执行了不同的运动想象任务。每个受试者针对以下四个任务中的每一个执行了3轮21试验:当目标出现在屏幕左侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕的右侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕顶部时,受试者想象打开和合上双手的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕底部时,目标会想象双脚张开和合拢,直到目标消失。然后受试者放松。为了统一数据维数,研究者选择了4s的数据,因为每次想象任务的执行时间都在4s左右。此外,脑电图任务是分开的,研究人员在实验中将左拳,右拳,双拳和双脚MI任务分别称为T1,T2,T3和T4。图2 scout命名左右运动想象的scout分别命名为L1、L2、L3、L4、L5、R1、R2、R3、R4、R5,如图2所示。10个scout每一个都被扩展到40个顶点,每个顶点只有一个源。L1区域对应40个信号,其他scout也一样。在计算了来源后,研究者在运动皮层中创建了十个scout,如图3所示。图3 创建10个scout使用ESI计算十个受试者(S5、S6、S7、S8、S9、S10、S11、S12、S13、S14)每次试验的四个任务(T1、T2、T3、T4)的源。对于这四项任务中的每一项,每个受试者每次都要进行7次测试(#1,#2,#3,#4,#5,#6,#7)。展示了第一个步的10个被试的10个scout的4项任务的来源。然后提取10个scout的时间序列进行进一步分析。特征提取在计算源之后,研究人员在运动皮层中创建了包含40个源的10个scout,并提取了scout的时间序列。如图4所示为提取R5 scout时间序列作为示例。图的右边显示了R5 scout的时间序列。本文利用小波变换从scout时间序列中提取特征。图4 提取R5 scout时间序列作为示例在这项研究中,研究者提出利用CNN来解决运动想象任务分类的问题。该模型基于Schirrmeister等提出的Deep ConvNet架构,该网络模型由一个六层卷积网络组成,其中两个最大池层和三个全连接层,如图5所示。图5对于Physionet数据库,研究者首先采用Deep ConvNet架构,包括四个卷积层、四个最大池层和一个全连接层。在实验中,研究者依据经验使用两个最大池化层。并尝试了不同数量的卷积层和完全连接层。时频图利用Morlet小波方法得到了scout的特征。对于每个任务,R5 scout的时频图如图6所示。包含时间和频率互补的时频分析方法提供了时域和频域的联合分布信息,清晰地描述了信号频率与时间的关系。图6 R5 scout的时频图显然,只有部分时频映射是红色的,表明每个任务只对特定的频率和时间敏感。由于图的数量比较大,研究者使用CNN来选择和学习这些图中最基本的特征。研究人员随机选择了几个样本,并将一些特征图可视化,作为MI任务的学习表示,如图7所示。图7为了获得有效的结果,将数据集分为90%作为训练集,其余10%作为测试集。首先,将十个受试者的数据集(总共19320个样本)分为17388个样本以训练所提出的CNN模型,以及1932个样本以验证模型的有效性。在实验中,研究者还选择了另外四个受试者的数据集以增加数据集的规模(27048个样本),其中24343个样本是训练集,其他样本是测试集。在选定的scout上对所提出的CNN架构进行了十次训练和测试,以验证所提出模型的鲁棒性。图8(a)显示了10个scout中每个的全局平均精度。图8 统计结果R5的全局平均精度最高,达到94.5%,而L2的全局平均精度最低,为91.3%。对应L1、L3、L4、L5、R1、R2、R3、R4的整体准确率分别为92.4%、92.5%、93.6%、91.9%、93.0%、91.8%、92.1%、92.6%。所有scout的总体精度均在91%以上,标准差均在0.20%以下。图8(b)显示了十个scout中每个scout四个MI任务的组级统计结果及其标准差。一般来说,R5表现的要比其他的好,而L2在迭代2000中表现最差。标准差较小,说明这些精度更接近平均值且稳定。图9 统计结果图9(a)显示了带有标准差的混淆矩阵,说明了group level分类结果。T1、T2、T3和T4的全局平均精度峰值分别为95.3%、93.3%、93.6%和96.0%。R5 scout的四个MI任务中的每一个都如图9(b)所示。通过改变训练集和测试集顺序的10次试验,确定了scoutR5的性能,结果如图10(a)和(b)所示。在10次试验中,scout R5的T1、T2、T3、T4的平均准确率分别为93.3%、93.8%、94.2%、94.1%。换句话说,四个任务中每一个的平均准确率都超过了93%。全局平均准确率为93.7%。10次试验结果表明,该方法对scout R5的分类效果较好。从以上结果可以清楚地看出,R5 scout在四种MI任务的分类中扮演着最重要的角色。因此,选择R5对四个MI任务进行分类。图 10图11. (a)是不同模型的全局平均准确性的比较。可以发现,该研究提出的模型可以达到最大的精度。从图11. (b)不同模型的ROC曲线可以看出提出的模型比其他模型表现更好。©不同模型T1上的精度比较。(d)不同模型T2的精度比较。(e)不同模型T3的精度比较。(f)不同型号T4的精度比较。图11 不同模型的精度比较结论东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法。该方法可以对运动想象(MI)任务进行分类。实验结果表明,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者加入了4个新的受试者进行验证来验证方法的有效性。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。论文信息:A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN
东北电力大学 2021-04-10
面向工程机械机电液一体化系统的动态性能匹配方法与分 析软件
面向工程机械机电液一体化系统的动态性能匹配方法与分析软件(以下简称为软件), 能够根据用户对工程机械整机动力配件的选型,自动组成整机系统模型,并预测工程机 械整机运行时的性能以及各配件的功率输出和发热情况。该软件可应用于工程机械产品 开发的各个阶段如参数选型,性能匹配、故障诊断、实验辅助等,并已成功应用于山推 工程机械股份有限公司的新产品开发中。 技术特点: (1) 机电液热融合建模,理论定位高级。软件以预制的机电液零部件模块模型为基 础,可快速地、精细化地实现极端工况条件下机电液融合模型。 (2) 一体化的系统分析,问题覆盖面广。软件综合多种软件资源,对特定工程机械 机型的核心动力系统,可实现任意节点输出的、图解化的、基于机械系统实验结 果的系统分析。 (3) 机型软件快速开发,面向用户需求。软件可针对牵引底盘和非牵引底盘,快速 开发出面向特定工程机械机型的机电液一体化性能分析软件。 (4) 功能契合实际需要,适用范围广泛。适用于工程机械各个技术阶段的参数选型、 性能匹配、故障诊断、以及实验辅助。
同济大学 2021-04-13
北京市科学技术委员会、中关村科技园区管理委员会关于印发 《北京市科学技术奖励办法实施细则》的通知
为做好本市科学技术奖励工作,进一步规范北京市科学技术奖(以下简称市科学技术奖)的提名、受理、评审、授予等各项活动,根据《北京市科学技术奖励办法》(以下简称《办法》),制定本细则。
北京市科学技术委员会、中关村科技园区管理委员会 2024-11-29
全国高校区域技术转移转化中心建设工作会召开
12月26日,全国高校区域技术转移转化中心建设工作会在南京召开。教育部党组书记、部长怀进鹏,江苏省委副书记、省长许昆林出席会议并讲话。教育部党组成员、副部长吴岩主持会议。
微言教育 2024-12-27
焊接结构内外一体化智能检测装备与自主评估技术
焊接作为工程机械领域的关键技术,直接决定着国之重器的安全可靠性。目前,智能焊接与检测严重依赖国外进口设备,价格昂贵、售后服务难以保障。对于大型、复杂焊接结构,焊后焊缝质量智能检测在整条焊接产线上属于空白。本团队在国内首次开发了大型焊接结构内外一体化智能检测装备及软件,部分高端装备达到国际水平,建成了国内首条内外一体化焊接智能检测与评估生产线,在徐工挖掘机上获得应用,并在央视CCTV2制造中国节目中播出。 图片 内外一体化焊缝智能检测与评估生产线获央视CCTV2报道
吉林大学 2025-02-10
北京航天科恩实验室装备工程技术有限公司
北京航天科恩是一家实验室建设EPC总承包商,作为深耕实验室建设领域20年的行业先锋,我们始终以"科学设计·精准交付"为理念,为生物医药、环境监测、高校科研、医疗检测等领域的客户提供一站式实验室解决方案。我们的业务范围不限于实验室规划设计、实验室装修装饰、实验室改造翻新、实验室施工、实验室水电气/暖通系统设计、实验室废气废液处理、实验室家具定制安装销售、实验室相关配件供应等。  
北京航天科恩实验室装备工程技术有限公司 2024-12-11
车辆遥控技术(技术)
成果简介:车辆遥控技术在军事和民用场合有着广泛的应用,遥控车辆在战争、防暴、安全领域应用可以有效地减少人员伤亡,如遥控式防爆机器人、三防遥控机器人、遥控军事试验车等;在民用工程作业中,遥控车辆可以使人脱离危险恶劣的工作环境,提高安全性和舒适度,如遥控压路车、遥控危险试验车辆等。可提高工作效率,有效地减少操作人员的疲劳程度。主要功能和技术指标:远距离控制车辆作业,使其在规定的路径上按操作人员的指令或预设指令行驶;控制车辆完成作业动作;在遥控地点得到车辆本身信息和作业场景信息;在条件和配置许可的条件下
北京理工大学 2021-04-14
首页 上一页 1 2
  • ...
  • 46 47 48
  • ...
  • 703 704 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1