高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
XM-GCA成人胫骨穿刺训练模型(骨内输液模型
XM-GCA成人胫骨穿刺训练模型(骨内输液模型)   一、功能特点: ■ XM-GCA成人胫骨穿刺训练模型(骨内输液模型)采用高分子材料制成,肤质仿真度高,解剖标志明显,便于操作定位。 ■ 骨穿刺操作针感逼真,进针后会有落空感,并有人造骨髓流出,可通过外接输液袋向骨髓内快速输入药液。 ■ 局部皮肤及骨髓腔模块可更换。   二、标准配置: ■ 成人胫骨穿刺训练模型(骨内输液模型):1台 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
XM-GCA成人胫骨穿刺训练模型(骨内输液模型
XM-GCA成人胫骨穿刺训练模型(骨内输液模型)   一、功能特点: ■ XM-GCA成人胫骨穿刺训练模型(骨内输液模型)采用高分子材料制成,肤质仿真度高,解剖标志明显,便于操作定位。 ■ 骨穿刺操作针感逼真,进针后会有落空感,并有人造骨髓流出,可通过外接输液袋向骨髓内快速输入药液。 ■ 局部皮肤及骨髓腔模块可更换。   二、标准配置: ■ 成人胫骨穿刺训练模型(骨内输液模型):1台 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
依多训内镜手术培训机器人导航版
依多训内镜手术培训机器人依托云平台,将医学病理,影像数据、手术培训智能分析引擎等绝密数据及算法存储于云端。 打破传统内镜手术培训的模式,为广大用户带来系统化,精确化,数量化的手术仿真培训教学。系统集人机交互人工智能、VR、AR、医疗影像、机械电子等多个当代学科最尖端技术于一体,可广泛用于医疗行业的各个临床手术培训。
深圳智触计算机系统有限公司 2022-06-09
依多训内镜手术培训机器人便携版
依多训内镜手术培训机器人依托云平台,将医学病理,影像数据、手术培训智能分析引擎等绝密数据及算法存储于云端。打破传统内镜手术培训的模式,为广大用户带来系统化,精确化,数量化的手术仿真培训教学。 系统集人机交互人工智能、VR、AR、医疗影像、机械电子等多个当代学科最尖端技术于一体,可广泛用于医疗行业的各个临床手术培训。
深圳智触计算机系统有限公司 2022-06-09
易燃品/毒害品存储柜(外钢内PP系列)
易燃品/毒害品存储柜(外钢内PP系列)以合规、环境、健康、安全为产品理念,设计构造采用了外钢内PP材质,解决了在危险化学品储存过程中应具备防盗、防火、防静电、通风、防腐、防泄漏、双锁管理、监测、调温、防爆、防潮灯的防范安全措施,满足了危化品储存要求。本产品符合Q/320205XBB001-2014标准,具有防盗、阻燃、耐腐蚀、通风等功能。  
焦雪安全科技(无锡)有限公司 2022-05-24
基于深度时空分析的综合能源数据挖掘与预测技术
本成果针对城市水电气热等综合能源数据来源广泛,结构复杂,且与用户、时间、空间信息关系紧密的特点,构建了高性能综合能源数据分析平台,提出了细粒度的能源数据分析理论框架及方法,并将其应用于智慧城市建设。
南开大学 2021-02-01
槽式光热发电多模型预测函数控制及其优化
针对太阳能集热系统扰动多、大滞后和大惯性等控制难点,建立了适合控制器设计的简化分段非线性模型,并设计了基于预测函数控制策略的集热系统出口导热油温度控制系统。该预测函数控制策略在调节速度、超调量以及稳定性方面的控制效果均明显优于传统PID控制策略;与未简化的多模型预测控制相比,简化后的多模型预测函数控制的最大动态偏差增大了13%,但计算量大大降低,控制器的实时性也得到增强。
南京工程学院 2021-05-21
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
化工设备预测性维修规划关键技术的研究
本项目发展了与时间相关的破坏理论,包括与时间相关的损伤理论、与时间相关的断裂理论、以及与时间相关的损伤可靠性理论,建立了高温构件损伤局部化的测量与分析方法,得出了冶金不连续结构、几何不连续结构、温度不均匀结构的损伤规律,由此形成了结构弱点识别技术,并通过与微观组织定量分析手段相结合,有效地解决了高温设备何处修与何时修的问题。同时该项目应用计算机及网络技术以促进先进的维修规划技术向企业管理的各个环节渗透。基于C/S与B/S模式相结合的思路,构建以预测为基础的过程设备管理系统,在开发设备维修日常管理系统的同时,将先进的缺陷评定技术作为转化的重点,并建立了高温设备远程寿命评估及监测的模块。该项目总体上达到了国际先进水平,许多具体技术是国内外首创的。  本项目的技术成果可应用于化工、石油化工、发电、冶金等工业领域的设备维修规划与失效预防。随着我国国民经济建设的快速发展,进入老化期的工厂(> 100,000 小时)越来越多,保证安全生产和降低维修成本的压力日益增大,另一方面国内高温装备制造商通过采用本项目的技术,可望提高其设备的市场竞争力。72%片碱生产蒸发浓缩装置
南京工业大学 2021-04-13
首页 上一页 1 2
  • ...
  • 28 29 30
  • ...
  • 653 654 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1