高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
复杂化工废水复合催化转化技术
本技术面向化工污染控制的关键技术难题和迫切需求,在科技部重大“863”课题的大力支持下,凭借学校在化工催化反应、高效分离及多技术耦合强化等方面的强大技术优势,经过多年联合攻关,在特种功能催化材料、多技术协同及反应器结构优化设计等方面取得了重要技术创新,成功发明了新型的“化工废水有机毒物高效复合催化反应器”。
南京工业大学 2021-04-14
活性氧处理有机废气废水技术
江南大学安全检测与分析研究室在有机废气废水的检测和治理方面有着多年的研究经验,开发出基于活性氧氧化分解有机污染物的关键技术,为企业提供各类有机废气/废水的检测和处理工艺和装备研发。以高效低耗、无害化、资源化处理新技术,实现废气/废水达标减排;研制与资源循环利用相协调的废气/废 水集成处理体系,实现工程化转化;利用物联网、GPRS/3G 无线通讯技术实现对企业废气净化治理状态及效能进行 24 小时在线监控,实现采集、传输、存储功能一体。
江南大学 2021-04-13
实验室废水处理设备
实验室排放的废水的水质相当复杂,此类废水的排放周期不定,排放水量无规律,且所含污染物成分复杂,除含有洗涤剂及常用溶剂等有机物外,还有较多的酸碱,有毒有害的有机物以及重金属, 而且含有许多新生物质, 病原微生物等。 根据实验室废水排放的实际状况,制定了一个实用性强,适用性广,运行成本低的工艺流程作为设计的主要思路,通过多种方案的比较,本着分类收集, 就地、及时处理, 简易操作, 以废治废和降低成本的原则,运用成熟的处理工艺、成功设计出一款具有自主知识产权的一体化实验室废水处理设备。可根据不同废水的水质及水量特征,利用物理、化学和生物的方法对废水进行处理,使废水净化,减少污染,以至处理后的废水可排入市政污水管网也可以通过再处理工艺将处理后的废水进行回收、复用,充分利用水资源。出水水质达到《中华人民共和国污水综合排放标准》(GB8978-1996)排放标准及《城市污水再生利用分类》(GB/T18919-2002)标准,符合全国各地对新建实验大楼的环评验收要求。
湖南王牌环保科技有限公司 2021-12-08
城市复合空气污染治理关键技术和设备
中国经济发达城市群,特别是珠三角等地区,工业和人口密集。我国城市空气污染呈现复合型特点, 除了人们熟知的大气细颗粒物和臭氧污染等二次污染,还包括甲醛、甲苯等有毒挥发性有机物以及恶臭气 体和细菌病毒等,而这些污染物往往毒性更大、危害更严重,严重破坏空气环境和人体健康,极大制约了 经济社会的快速发展。复合污染物不仅存在大气中,也广泛存在于人类活动的各类室内环境。城市空气污 染来源广泛,包括汽车、燃煤、工业过程和生活源等排放的一次污染物,也包括二次污染。目前人们往往 更多关注雾霾和颗粒物污染,而往往忽视了我国大气污染复合型的特点及其危害,特别忽视了城市建筑等 人类活动场所环境中空气污染。
中山大学 2021-04-10
恶臭废气生物过滤法治理工程技术
高校科技成果尽在科转云
西安交通大学 2021-04-10
煤矿与矿山企业噪声环境控制和治理(技术)
成果简介:该项目利用了振动理论、声学理论、振源识别与声源识别技术、振动与噪声监测与控制技术,可对各种类型的选煤(矿)厂、煤矿通风设备车间等场合振动噪声特性进行分析和评估,并经过声学布置与优化、减振降噪控制措施实施后,使煤矿与矿山企业噪声水平达到国家标准或优于国家标准。 项目来源:合作开发 技术领域:矿山工程、能源工程 应用范围:煤矿与矿山企业噪声环境设计及改造 技术水平:国内先进 现状及特点:建立了先进水平的设备振动噪声分析流程
北京理工大学 2021-04-14
改性藻絮凝剂治理蓝藻水华的技术
中试阶段/n该项目公开了一种改性藻絮凝剂的制备方法及其在治理蓝藻水华中的应用,用化学络合以及物理吸附的方法,把硝酸铁固定到阴性聚丙烯酰胺上去。改性后的絮凝剂表面具有比较多的离子性质。从而改良后的絮凝剂可以快速的去除微囊藻。改性絮凝剂不但具有良好的吸附效果,而且这类高分子聚合物为商品化产品、廉价、易得,且改性后絮凝剂的稳定性很高。改性后的絮凝剂对环境、人畜无毒无害、无残留,能够显著地改良及净化养殖水体环境,有效避免蓝藻水华的爆发且不会造成二次污染。
华中农业大学 2021-01-12
环境工程教学设备-硫氧化物治理设备
一、装置概述 PAA-Q型二氧化硫废气治理技术综合实验装置是根据高等教育的改革方向,顺应国家培养应用型高技能人才的战略思想,以前沿技术为导向,紧密结合二氧化硫实际处理工程的功能和特点,并针对高等院校对二氧化硫废气处理工艺应用和创新实验教学的实际需要而专门研制的综合性实验装置。本装置涉及放电等离子体技术、吸收技术、吸附技术以及智能程控技术等内容。装置工艺流程简洁、美观,可视化程度高,具有处理效率高、彻底、无二次污染等优点,非常适合大专院校的相关专业开展实验、实训、设计、创新创业训练等。 二、主要参数及指标 (1)处理负荷:<5000mg/L; (2)处理气量:<500L/min; (3)处理效率:≥99%; (4)装置净重:260kg; (5)外形尺寸:2000mm×700mm×1800mm; (6)供电电压:AC220V、50Hz; (7)运行功率:<3kW; (8)操作条件:常温、常压; (9)安全保护:具有漏电压、漏电流保护装置,安全符合国家标准。 三、主要配置及性能 采用自主知识产权的双介质阻挡放电等离子体反应器,放电均匀、稳定,二氧化硫转化率高。 高频高压电源采用两级控制,安全、可靠,输出频率和电压可调。 透明有机玻璃材质的吸收塔中填装PP多面空心填料,并配置有分布器和除雾器,气液传质好,可视化程度高。 多段蒸笼式撬装活性炭吸附塔,吸附效率高、活性炭更换方便,并配套活性炭再生设备,可延长活性炭使用寿命。 吸收液通过气液混合自吸泵输送,并采用自动和手动相结合的控制模式,灵活、方便。 采用电磁式增氧气泵作为二氧化硫的载气泵,气量大、稳定、噪音低。 催化臭氧分解器可将尾气中的残留的臭氧快速转化为氧气,不会产生二次污染; 在线二氧化硫气体浓度检测器测量精度2%、输出4-20MA,可接PLC控制器。 三菱FX3U系列PLC主机和模拟量输入输出模块完成设备运行控制,10英寸彩色触摸式液晶显示屏实时显示控制按键、装置运行状态及时间、pH、气压、二氧化硫浓度等重要参数。 所有设备模块化安装于304不锈钢材质的柜体中,柜体前后开设有视窗,顶部安装有可调速换气扇,底部配有禁锢万向脚轮。
科利尔(青岛)环境技术有限公司 2023-03-03
含盐高浓度有机废水处理技术
目前,生物法是工业废水处理的常用方法,但其在处理含盐高浓度有机废水时效果不理想。焚烧法是一种简单高效的化学处理方法。高浓度有机废液中的大分子有机物在高温下会氧化分解,转化为二氧化碳、水、氮氧化物等小分子物质,从而达到无害排放目的。 常见废水焚烧装置主要有三种:液体喷射炉、回转窑焚烧炉和流化床焚烧炉。这些焚烧炉的燃烧室大多由耐火材料砌成,对有机废水的盐分、pH要求较高,否则在焚烧过程中会产生低熔点共晶体,导致炉膛结焦、结渣以及造成炉膛酸碱腐蚀,严重影响焚烧炉使用寿命。 东南大学提供了一种含盐高浓度有机废水处理装置及方法,用于处理含盐高浓度有机废水。该工艺集蒸发除盐、喷射焚烧、废液浓缩、烟气处理等于一体,对于极难处理的苯环类、杂环类等各类含盐高浓度有机废水具有很好的处理效果,工艺简单,处理效率高,成本低。 本技术已申请国家发明专利2件(授权1件),发表学术论文8篇,获国家“973”、江苏省环保厅科技项目支持。
东南大学 2021-04-11
高浓度氨氮废水处理技术
HSAN-C吹脱回收硫酸铵技术: 新型吹脱塔是氨氮废水在碱性条件和一定温度下,通过高频超声的空化作用和专用塔板,在空气的动力作用下,使废水中的游离氨最大程度进入空气中,从而降低废水中氨氮含量的新型设备,吹脱出的氨气进入高效回收塔,可回收25%的硫酸铵产品,也可通过分离装置直接回收高纯度的硫酸铵晶体。 经过我公司多年的研究、改进和优化,吹脱塔一次性吹脱效率可达92%以上,该设备目前已广泛应用于煤化工、有色金属、精细化工等行业,并已出口至台湾。 蒸发回收铵盐技术: 对于偏酸性高氨氮废水,氨氮均以铵盐形式存在,如采用吹脱、蒸馏等技术需将氨氮转化为游离氨,不仅需消耗大量的液碱,而且铵盐转化为钠盐,未能根本解决出水达标问题;而采用低温多效蒸发技术,使铵盐结晶回收,冷凝出水达到回用标准,从而实现高氨氮废水处理的零排放。 特点:(1)利用负压多效蒸发技术,提高了生蒸汽的利用率,从而达到节约蒸汽的目的,通常二效或多效蒸发每吨废水蒸汽消耗量为0.28-0.33吨;(2)可直接回收高纯度的硫酸铵、氯化铵、硝酸铵和硫酸钠晶体,出水可达回用标准,从而实现废水处理的零排放; 双效节能汽提脱氨成套技术: 技术特点:(1)采用双效汽提+精馏复合工艺流程,对氨氮废水进行汽提及精馏得到浓度为10—20%浓氨水或者高浓度氨气。不仅可以实现废水氨氮含量达标排放(<15mg/L),而且实现其中氨氮的资源化回收利用。(2)在氨氮废水处理系统中采用双效节能技术有效利用系统热量,使处理氨氮废水蒸汽单耗在汽提精馏脱氨成套技术的基础上再降低45%左右,一般为90—110 kg/吨废水。
北京化工大学 2021-02-01
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 28 29 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1