高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
建筑遗产保护
承担国家自然科学基金、国家社科基金、北京自然科学基金等一批课题研究,开展“沁河中游古村镇研究”,、“北京古村镇调查研究”、“山西省古村镇保护利用与减贫方略研究 - 测绘与导则”等项目研究。出版专著“山西古村镇系列丛书”、《北京传统村落》、《山西古村镇历史建筑测绘图集》等一大批科研成果及工程实践。
北京交通大学 2021-04-13
吉林建筑大学
吉林建筑大学是一所以工为主,以土木建筑为特色,理、工、文、管、法、艺、经等多学科相互支撑、协调发展的吉林省重点建设的普通高等学校,是吉林省人民政府与住房和城乡建设部共建高校,是全国首批深化创新创业教育改革示范高校,是吉林省城乡基本建设领域高级专门人才培养基地、科技研发基地、产业发展决策咨询与技术创新服务基地。 学校始建于1956年,是新中国首批设立的十所建筑类专门学校之一。1960年经国务院批准,学校定名为吉林建筑工程学院,开始举办本科教育。1997年通过原国家教委本科教学工作合格评价。2003年学校成为硕士学位授权单位。2008年接受教育部本科教学工作水平评估取得“优秀”成绩。2010年学校从红旗街老校区整体迁入净月新校区。2013年更名为吉林建筑大学。2015年通过教育部本科教学工作审核评估。2017年学校被确定为吉林省博士学位授权单位立项建设高校。 学校坐落于吉林省长春市净月国家高新技术产业开发区,校园占地面积94.8万平方米,总建筑面积45.4万平方米。学校图书馆藏书130余万册、中外文期刊1600余种,教学科研仪器设备总值3.36亿元。学校不断完善人文环境、文化设施和景观建设,优化学习环境,满足学生成才需要。 学校全日制在校生规模16000余名,其中,本科生15000余名,硕士研究生1000余名,全日制来华留学生100余名。学校现有教职员工1300余名,其中专任教师850名,具有高级专业技术职务的教师占专任教师总数的50%以上,具有博士学位的280名,博士和硕士研究生导师300余名。学校拥有中央直接联系的高级专家、哲学社会科学领域资深教授、新世纪“百千万人才工程”国家级人选、国家级有突出贡献中青年专家、享受国务院政府特殊津贴人员、国家有突出贡献的留学回国人员和教育部“新世纪优秀人才”、“长白山学者”、“长白山技能名师”、吉林省高级专家、吉林省拔尖创新人才第一二三层次人选、吉林省有突出贡献中青年专家、吉林省跨世纪学术学科带头人、吉林省第一批百名科技领军人才、吉林省首批学科领军教授、吉林省教学名师、吉林省优秀教师、吉林省跨世纪中青年骨干教师、吉林省建筑大师和吉林省勘察设计大师等各类高层次专家、学者80余名。 学校设有建筑与规划学院、土木工程学院、市政与环境工程学院等16个学院(部)。拥有建筑学、土木工程、环境科学与工程、材料科学与工程、管理科学与工程、城乡规划学、设计学、应用经济学、马克思主义理论硕士学位授权一级学科点9个,建筑与土木工程、工业设计工程、电气工程、交通运输工程、安全工程5个工程硕士专业学位授权领域,以及建筑学硕士、风景园林硕士2个专业学位授予权;形成了涵盖理、工、文、管、法、艺、经7个学科门类硕士学位授权专业类别。建筑学、土木工程、环境科学与工程、管理科学与工程、材料科学与工程5个一级学科为省级优势特色重点学科,其中建筑学、土木工程为吉林省高校重中之重建设一级学科。 学校开设本科专业52个,拥有国家第一类特色专业建设点2个,吉林省高校品牌专业建设点6个,吉林省特色专业建设点8个,建筑学、土木工程、建筑环境与能源应用工程、给排水科学与工程、工程管理、城乡规划6个土建类专业通过全国土建类专业教育评估,土木工程、安全工程、测绘工程等专业通过中国工程教育专业认证评估。 学校坚持围绕国家和区域经济社会发展重大需求开展科学研究,以高水平科研支撑高质量教育教学和高质量社会服务。学校在严寒地区绿色建筑、松花江流域水环境治理与保护、建筑防灾减灾、城镇化建设规划、设施与不动产管理(FM)、建筑信息化协同设计(BIM)、历史建筑修复与利用等领域的研究处于国内先进水平。学校建有包括“松辽流域水环境”教育部省部共建重点实验室、吉林省秸秆综合利用技术高端科技创新平台、“松辽流域水资源与水环境”吉林省高校重大需求协同创新中心、吉林省结构与抗震科技创新中心、吉林省寒地绿色建筑技术工程研究中心、吉林省建筑电气综合节能重点实验室、吉林建筑文化研究基地、吉林省建筑一体化集成技术科技协同创新中心在内的30个省(部)级以上科研平台。“十二五”以来,学校承担国家科技重大专项、国家科技支撑计划、“973”计划、国家自然科学基金、国家社会科学基金、国家艺术基金等国家级科研项目120余项,各级纵向科研项目800余项;学校获各级政府奖项300余项,其中,国家科技进步二等奖2项、国家技术发明二等奖1项。国家住房城乡建设部授予学校“全国建设系统科技工作先进单位”荣誉称号。 学校努力提升人才培养质量,着力增强学生的创新精神、实践能力和社会责任感,把促进学生全面发展和适应社会需求作为人才培养质量的根本标准。致力于培养和造就理论基础坚实、实践能力扎实、思想作风朴实、服务城乡基本建设领域和经济社会发展的应用型高级专门人才,形成了“三实型”人才培养特色。学校高度重视创新创业教育,先后被吉林省发改委、人社厅、教育厅等部门确定为“吉林省省级大众创业万众创新示范基地”,被教育部评为“2017年度全国创新创业典型经验高校”,是中国互联网新闻中心评选的六所“中国创业创新典型示范高校”之一。 学校高度重视精神文明创建工作,扎实推进校园文化建设,努力营造崇尚科学、严谨求实、善于创造的校园文化,被评为“吉林省文明单位”“全国厂务公开和民主管理工作示范单位”,被授予吉林省“五一劳动奖状”荣誉称号。学校不断强化师德建设,努力造就一支有理想信念、有道德情操、有扎实学识、有仁爱之心的教师队伍,“松辽流域能源与环境教师创新团队”被认定为首批吉林省高校黄大年式教师团队,近年来有几十名教师荣获“全国三八红旗手”、省市优秀共产党员和师德先进个人等荣誉称号。学校大力加强学生人文素质和科学精神教育,着力提升学生的人格、气质、修养等内在品质,把思想道德教育的要求和任务融入学生的学习生活之中,组织开展具有品牌特色的校园文化活动,近年来学校在全国和吉林省大学生各类活动中多次获得优异成绩,被评为全国优秀组织单位。 学校毕业生就业率位居省内高校前列,多次被评为“吉林省普通高校毕业生就业管理工作先进集体”。毕业生就业质量稳步提高,近几年毕业生进入全国一线城市的比例达到52%,进入中国建筑工程总公司、中国中铁股份有限公司、中国铁建股份有限公司、中国交通建设集团有限公司、中国冶金建设集团公司等世界和国内500强企业的比例为30%以上。学校自建校以来培养的7万余名毕业生活跃在国家城乡基本建设领域,成为建筑科研、设计、施工、管理等领域的骨干和中坚力量。 学校坚持开放办学,先后与美国、俄罗斯、澳大利亚、韩国、新加坡等20多个国家及地区的50多所高校和科研机构建立了合作交流关系,通过互派留学生及专家学者开展学术交流、科研协作。近年来,学校与俄罗斯太平洋国立大学、美国波特兰州立大学、美国杨斯顿州立大学在建筑学、工程管理、土木工程、电气工程等专业合作举办本科层次中外合作办学项目。 面对新世纪我国经济社会发展的重要战略机遇期,学校坚持以学科建设为引领,以体制机制改革为重点,聚焦创新能力提升,坚持走内涵发展道路。全校师生员工奋发有为,克难攻坚,为建设“特色鲜明、域内一流、同类领先的教学研究型社会主义现代大学”的目标不懈努力奋斗。
吉林建筑大学 2021-02-01
慢回弹泡沫胶黏剂
慢回弹填充泡沫是将聚氨酯泡沫在水溶性胶黏剂中进行浸渍、挤压、干燥后,得到具有慢回弹性的软泡材料。这种填充泡沫由于密度较大,对空隙进行填充后能够起到吸音、隔热的效果,而且由于其慢回弹的特性,在用作密封填充使用时,相比普通密封条具有更好的密封效果。这种泡沫广泛用于汽车门板、高铁密封及各种高端座椅等填充领域。本成果制备的胶黏剂具有水溶性好、浸渍效率高的特点,可以对开孔聚氨酯泡沫直接浸渍得到慢回弹填充泡沫。
哈尔滨理工大学 2021-05-04
水膨胀性密封胶
水膨胀性密封胶是一种新型功能性密封胶,它具有显著的疏水性能,在有水份存在的情况下胶液即可逐渐固化,同时体积会膨胀5~6倍,达到堵漏、填缝、防渗、粘接的目的。它可用作为建筑堵漏防渗密封胶、隔热隔音材料的填充剂、飞机场跑道水泥路面的密封剂,大坝的水下防渗堵漏剂,另外由于其对金属、石材、纸张、水泥块的有良好粘接效果,也可用作于这些材料相互之间的粘接剂。本产品有两种类型的系列产品:单组分产品系列和双组分产品系列。针对客户的不同要求,可以选择不同类型的产品,如固化时间的要求,固化后的体积膨胀系数,固化后的硬度要求等。
武汉工程大学 2021-04-11
黄原胶生产技术
黄原胶是由野油菜黄单胞菌产生的胞外多糖,由于其具有许多独特的物理化学性能而在石油工业、食品工业和日用化工产品等20多个行业中获得广泛应用,是目前世界上生产规模最大且用途极为广泛的微生物多糖。全世界年产黄原胶约15万吨,我国在20世纪末年产约2000吨左右,由于种种原因生产厂的产量还未达到设计能力。而我国是应用黄原胶的大国,供需矛盾十分突出,据专家预测,随着
西安交通大学 2021-01-12
银包铜粉导电胶
从导电胶的重要性、技术和市场需求、国内外生产和研发的现状来看,高端导电胶是直接影响我国半导体行业能否健康发展的核心材料之一。 本项目重点探索树枝状银包铜在导电胶方面的性能与应用,为设计制造低成本高导电绿色环境友好型导电胶提供坚实可靠的研究思路和科学理论依据。 针对低成本高导电树枝状银包铜粉导电胶的开展,该项目实现既能满足电子元器件的高导电需求又具有低温快速固化、优异高温高湿稳定性以及高强度等优异性能、且比现有复合导电胶导电性能更优、稳定性更高、成本更低、机械强度更高的结
南京大学 2021-04-14
高性能印刷胶辊胶料
针对普通油墨的性质,专门设计和研制的适于普通油墨印刷专用胶辊胶料。 一、项目分类 关键核心技术突破 二、成果简介 UV胶辊胶料:针对UV油墨与普通油墨的不同性质,设计和研制出UV油墨印刷专用胶辊胶料。项目特色:硬度可根据印刷需求在35~95(邵尔硬度)范围内调整;优良的耐UV油墨和清洗剂侵蚀能力;优良的耐酸、碱性化学物质能力;高弹性及良好的亲墨性满足油墨的有效传递;优良的耐臭氧破坏性;优良的力学性能;优良的尺寸稳定性,保证高精度、高品质印刷需要。 酒精润板辊胶料:针对印刷中水墨传递过程,专门设计和研制的适于普通油墨印刷的酒精润板专用胶辊胶料。项目特色:高弹性及良好的亲水性满足水墨有效传递;优良的耐腐蚀和清洗剂侵蚀能力;优良的耐酸、碱性化学物质能力;优良的耐臭氧破坏性;优良的力学性能;优良的尺寸稳定性。 靠版胶辊胶料:针对普通油墨的性质,专门设计和研制的适于普通油墨印刷专用胶辊胶料。项目特色:硬度可根据印刷需求在30~60(邵尔硬度)范围内调整;优良的耐油墨和清洗剂侵蚀能力;高弹性及良好的亲墨性满足油墨的有效传递;优良的耐臭氧破坏性;优良的力学性能;优良的尺寸稳定性。
南开大学 2022-07-29
托马斯电机浇注胶
产品详细介绍 产品名称                                           托马斯高温导热胶(THO4074) 概       述 本品系改性环氧树脂胶粘剂,单组份,加热快速固化具有优越的电气性能和机械性能,耐热导热性好,化学稳定性和耐电晕性好、粘接强度高,操作简便。 适用范围 适用于电视机、工业炉冷却臂、大功率LED照明、电力电容器、热继电器、监视显示器、航天、航空、通讯、雷达、耐热骨架片等中工作的电热器芯片、电热器护片、垫片、电子管片、灯泡片等发热部件的粘接和密封同时达到优良的导热以及抗热震效果。 性   能   特   点 ·外观:单组份浅灰色黏稠膏状体(颜色可调整),无固体机械颗粒。 固化温度 固化时间 固化温度 固化时间 100℃ 60M 120℃ 30M 130℃ 20M 140℃ 10M ·耐候性、耐久性、耐紫外光性能优良。 。粘接强度高、有良好的电气性能和机械性能, 。耐热以及卓越的导热性,化学稳定性和耐电晕性能优。 ·适应温度范围广,粘接后在较高的温度下仍有较好的粘接效果。 ·粘接表面无需严格处理,使用方便。 ·耐介质性能优良,耐油、水、酸、煤油、乙醇、碱等。 ·安全及毒性特征:完全符合欧美质量标准,达到ROHS认证。 ·贮存稳定性较好,贮存期为6个月。(≤35℃) 主要技术性能指标如下:硬度 shore D 90 耐温范围:-48-+800℃(真空条件)  体积电阻25℃ 1×1015Ω.cm     表面电阻 2.5×1015Ω                  耐电压20-25kV/㎡  粘接强度:(Al+Al)常温:拉伸强度≥25MPa;     剪切强度≥18 MPa 200℃:拉伸强度≥3-5 Mpa  280℃≥1.2—1.3Mpa 使用 方法 1、将被粘物除锈、去污、擦净。 2、将调好的胶液涂于被粘物表面,合拢、压实、静置加热。 注意 事项 1、操作环境注意通风。 2、胶液如触及皮肤,可及时用肥皂水冲洗. 3、未用完的胶应盖好,置于阴凉通风处。如果有冷藏条件即更好。                                                                                        该版权属于成都托马斯科技2005-2011所有
成都托马斯科技有限公司 2021-08-23
积木式建筑模型
本实用新型涉及应用于一种静态模型的建筑模型,尤其是一种积木式建筑模型,它以建筑中的常用部 件为基本模块,由柱(1)、雨蓬(2)、屋面(3)、台阶(4)、墙(5)、门(6)、踏步(7)、平台(8)、 接头(9)、 梁(10)、楼面(11)、窗(12)组成,各基本模块之间采用榫卯形式连接,可搭接成各种形式、 风格的建筑模 型。 
南京工程学院 2021-04-11
“空调型”建筑涂料
本发明提出一种在夏季能大量反射太阳辐射且又大量发射自身热量,而到冬季时可 自发转换成能大量吸收太阳辐射且又很少发射自身热量的涂料,即吸收发射比可逆转换 的“空调型”涂料。 本发明由于采用了由氯化钴与六次甲基四胺混合物、邻苯二甲酸酯类化合物和三芳 甲烷内酯类化合物组成的在低温下可吸收太阳能、在高温下可反射太阳能的吸收发射可 逆转换材料,以及由氧化钒化合物和氧化钨化合物组成的低温下为低发射率、高温下为 高发射率的可逆转换材料,因此本发明实现了冬季吸热和夏季绝热的可逆转换,本发明 所需原料来源广泛、制作工艺简单,因此易于推广应用。
同济大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 32 33 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1