高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
建筑能耗数据采集终端
本实用新型公开了一种建筑能耗数据采集终端,主要包括ARM处理器、与ARM处理器相连的存储器、以太网络接口、数据采集模块、人机交互单元;所述以太网络接口为单向通讯接口,包括第一以太网络接口、第二以太网络接口,第一以太网络接口的输出端与ARM处理器的输入端相连,第二以太网络接口的输入端与ARM处理器的输出端相连;所述存储器包括DDRRAM、FLASHROM、SD卡存储器,均与ARM处理器相互连接。本实用新型是实现建筑能耗数据分类、分项采集的关键设备,负责采集监测区域内的电、水、燃气等计量装置的计量数据,
安徽建筑大学 2021-01-12
天津低能耗居住建筑供热模式应用技术
1.验证了稳态方法在计算耗热指标时的适用性,对比理论耗热量和实际耗热量,并分析其差异原因,得到了建筑实际耗热量修正计算方法;2.提出了热源总效率的概念,并基于此对不同供热方式的能效进行了比较,得到了基础量化数据,推荐了适用于低能耗居住建筑的供热方式;3.建立了适用于低能耗居住建筑供热模式的综合评价指标体系,完成了对供热模式的评价软件。定量分析了不同供热模式的特点,为工程应用提供参考。
天津城建大学 2021-01-12
建筑能耗监测平台建设与产业化关键技术
建筑能耗监测系统主要对电、水、燃气等能源总量以及照明插座用电、空调用电、动力用电和特殊用电等四个分项进行计量并将能耗数据远程传输,不仅能够对既有建筑进行能耗动态监测,及时发现问题、完善用能管理,同时可以通过对建筑实际用能状况的定量分析,以及同类建筑的能耗指标比较,评价和诊断建筑的能耗水平,充分挖掘节能潜力,从而提供有效的节能改造依据和方案。
大连理工大学 2021-04-13
高寒地区近零能耗建筑的多能互补采暖及供热系统
本实用新型涉及一种高寒地区近零能耗建筑的多能互补采暖及供热系统,利用太阳能与建筑地基蓄能结合解决冬季采暖、太阳能与空气源热泵结合解决生活热水。包括太阳能集热器、蓄热盘管、保温地基蓄热层、板式换热器、暖风机、空气源热泵、热水箱、膨胀水箱、蓄热循环泵、供暖循环泵、热泵循环泵、阀门等。非采暖季太阳能集热器加热生活热水储存水箱,不足时空气源热泵辅助加热。采暖季一部分热水流入蓄热盘管储存备用或通过暖风机向室内供暖,另一部分流入板式换热器加热生活用水。当太阳辐射较弱时则由建筑地基蓄热层流入暖风机向室内供暖,空气源热泵在温度较高的白天运行加热生活热水以储存备用。本实用新型利用可再生能源进行多能互补解决了高寒地区冬季采暖与生活用热问题,可实现建筑近零能耗运行。
四川大学 2017-12-28
零能耗辐射制冷织物
图1 零能耗制冷纤维织物制备技术示意图 零能耗智能制冷织物将光电超材料技术与智能纺织技术结合,旨在将随机结构排布的微纳材料与批量制备工艺相结合制备多材料功能纤维,引入特定波段光学反射与辐射能力的新特性,构建在阳光直射的室外环境下具有显著的降温效果(1-30°C范围内可控)的零能耗辐射制冷智能织物(图1),是材料-光学-纺织技术的跨领域多学科协同创新。   图2 零能耗智能制冷织物初步结果示意图:(a) 多材料纤维实物展示图;(b) 多材料纤维光学照片;(c) 多材料纤维缝纫照片;(d) 制冷织物实物展示图;(e) 制冷织物光学照片。 基于多材料纤维及纤维束制冷纱线结构设计和光学材料调控,批量纤维制备工艺已获得均匀连续的制冷纤维(图2 a, b),纤维强度足以利用缝纫机在商用面料上进行任意文字和形状的绣花。在此基础上,进一步利用纺纱和织造技术,得到在太阳辐射波段具有>90%反射率、在中红外波段具有>90%发射率的、经纬编织的光学超材料制冷织物(图2 d, e)。   图3 零能耗制冷织物模拟测试。(a) 制冷织物样品降温测试结果曲线图;(b) 制冷织物样品与商用织物样品降温测试对比结果曲线图;(c) 制冷织物样品与商用防晒衣样品降温测试对比结果曲线图。 经严格的测试,零能耗制冷织物样品可实现全天低于环境温度2-10℃的良好辐射制冷效果(图3a)。在此基础上,对样品织物、一系列商用织物(棉、氨纶、雪纺、麻布、防晒衣)以及模拟裸露皮肤进行对比降温测试(图3 b, c),在正午太阳辐射功率最强的整个时间段,织物样品低于不同商业面料5-7℃,低于不同品牌的防晒衣3-7℃。进一步在人体皮肤表面和小车模型内部进行降温测试(图4),与普通棉织物相比,智能制冷织物覆盖的人体皮肤表面可低~3℃,小车与空白小车的差值温度可达~30℃,与反光车罩覆盖的小车的差值温度可达~27℃,具有优异的降温效果。   图4 零能耗制冷织物降温测试。(a) 人体降温测试红外图;(b) 小车模型降温测试。 零能耗制冷织物可对人体局部微环境实现高效的热学调控,提供一种低成本、零能耗、高效的个人热管理方案,颠覆传统制冷技术,尤其是克服室外人体热管理技术固有的低效率、高能耗、大体积等瓶颈问题,并缓解传统制冷耗能导致的碳排放;零能耗制冷织物体系基于批量纤维制备技术以及先进纺纱织造工艺,具有零功耗降温、低成本、可产业化批量生产特征,与现有纺织行业相兼容,适合大规模推广制备和产业化应用;零能耗制冷织物秉持可持续发展的理念,采用可降解的服用聚合物材料和低成本的微纳颗粒为原料,打造低排放、可循环、绿色环保、柔软亲肤、舒适透气的可穿戴终端产品。应用前景广泛,可用于包括高端智能服装、特种服装、高端先进建材、个人热管理装置、冷链系统、智能仓储系统等领域,对纤维新材料技术和高端纺织产业的发展具有里程碑式的意义。
华中科技大学 2021-05-11
零能耗辐射制冷织物
项目成果/简介:图1 零能耗制冷纤维织物制备技术示意图零能耗智能制冷织物将光电超材料技术与智能纺织技术结合,旨在将随机结构排布的微纳材料与批量制备工艺相结合制备多材料功能纤维,引入特定波段光学反射与辐射能力的新特性,构建在阳光直射的室外环境下具有显著的降温效果(1-30°C范围内可控)的零能耗辐射制冷智能织物(图1),是材料-光学-纺织技术的跨领域多学科协同创新。 图2 零能耗智能制冷织物初步结果示意图:(a) 多材料纤维实物展示图;(b) 多材料纤维光学照片;(c) 多材料纤维缝纫照片;(d) 制冷织物实物展示图;(e) 制冷织物光学照片。基于多材料纤维及纤维束制冷纱线结构设计和光学材料调控,批量纤维制备工艺已获得均匀连续的制冷纤维(图2 a, b),纤维强度足以利用缝纫机在商用面料上进行任意文字和形状的绣花。在此基础上,进一步利用纺纱和织造技术,得到在太阳辐射波段具有>90%反射率、在中红外波段具有>90%发射率的、经纬编织的光学超材料制冷织物(图2 d, e)。 图3 零能耗制冷织物模拟测试。(a) 制冷织物样品降温测试结果曲线图;(b) 制冷织物样品与商用织物样品降温测试对比结果曲线图;(c) 制冷织物样品与商用防晒衣样品降温测试对比结果曲线图。经严格的测试,零能耗制冷织物样品可实现全天低于环境温度2-10℃的良好辐射制冷效果(图3a)。在此基础上,对样品织物、一系列商用织物(棉、氨纶、雪纺、麻布、防晒衣)以及模拟裸露皮肤进行对比降温测试(图3 b, c),在正午太阳辐射功率最强的整个时间段,织物样品低于不同商业面料5-7℃,低于不同品牌的防晒衣3-7℃。进一步在人体皮肤表面和小车模型内部进行降温测试(图4),与普通棉织物相比,智能制冷织物覆盖的人体皮肤表面可低~3℃,小车与空白小车的差值温度可达~30℃,与反光车罩覆盖的小车的差值温度可达~27℃,具有优异的降温效果。 图4 零能耗制冷织物降温测试。(a) 人体降温测试红外图;(b) 小车模型降温测试。零能耗制冷织物可对人体局部微环境实现高效的热学调控,提供一种低成本、零能耗、高效的个人热管理方案,颠覆传统制冷技术,尤其是克服室外人体热管理技术固有的低效率、高能耗、大体积等瓶颈问题,并缓解传统制冷耗能导致的碳排放;零能耗制冷织物体系基于批量纤维制备技术以及先进纺纱织造工艺,具有零功耗降温、低成本、可产业化批量生产特征,与现有纺织行业相兼容,适合大规模推广制备和产业化应用;零能耗制冷织物秉持可持续发展的理念,采用可降解的服用聚合物材料和低成本的微纳颗粒为原料,打造低排放、可循环、绿色环保、柔软亲肤、舒适透气的可穿戴终端产品。应用前景广泛,可用于包括高端智能服装、特种服装、高端先进建材、个人热管理装置、冷链系统、智能仓储系统等领域,对纤维新材料技术和高端纺织产业的发展具有里程碑式的意义。知识产权类型:发明专利知识产权编号:CN111575823A、CN111826965A、CN111455484A、CN111455483A、CN111560672A、2021101783117、2021100207492技术先进程度:达到国际领先水平成果获得方式:与企业合作获得政府支持情况:国家级计划/专项类别:源头创新计划-人才发展专项获得经费:300.00万元
华中科技大学 2021-04-10
无能耗空气水捕获
成果介绍水资源匮乏是全球绿色可持续发展面临的重大问题之一。地球周围空气中的水含量预计有1300万亿升,相当于全球湖泊淡水总含量的10[%]。对于这一“零成本”资源的综合利用,一方面,将有效缓解淡水资源短缺问题;另一方面,将实现对空气湿度的调控,为人类活动和生活居住提供舒适的空间,并改变人类的生存方式。基于上述挑战,本项目拟研制基于超强吸水二维纳米片的无能耗空气水捕获材料,并搭建相关水捕获装置。在水捕获装置中,超强吸水二维纳米片可以高效、主动地吸附空气湿度中的水分,吸附饱和后,在太阳光的照射下,吸附水将蒸发释放并收集,从而实现可循环的、无额外能量输入的空气水捕获。技术创新点及参数本项目的技术优势在于,超强吸水二维纳米材料的空气水捕获容量达自身重量的658[%],且捕获水可以在45ºC左右(即太阳光触发下)解吸,从而实现了理想的、无额外能量输入的、淡水捕获和供给。在理想情况下,1Kg超强吸水二维纳米材料可以在1天之内捕获21.5L的安全淡水。此外,本项目的超强吸水二维纳米材料可以用于研制可旋转湿度控制玻璃窗。玻璃窗朝空间内的一侧旋涂超强吸水二维纳米片,在调节空间内湿度达到一定程度后,180度旋转玻璃窗,空间外的太阳光将刺激吸附水的释放,从而实现了一种无能耗的空间内湿度可循环控制策略。这种湿度控制玻璃窗对未来的建筑设计、武器装备等领域将产生颠覆性影响。市场前景目前国内外研究的空气水捕获材料主要存在吸附量低、循环利用能耗高、材料制备复杂等缺点,本项目的超强吸水二维纳米片将有效弥补这些缺点,实现安全、绿色、无能耗的空气水捕获挑战目标,并实现产业化生产和应用。这一装置将为军民在山区、沙漠、海洋等安全淡水资源短缺地区提供一种简便高效的无能耗淡水供给策略。
东南大学 2021-04-13
能耗监测数据采集器
能耗监测数据采集器是基于分项能耗数据采集技术导则,针对能耗数据采集系统设计开发的专用能耗数据采集设备。能耗监测系统是指通过对国家机关办公建筑和大型公共建筑安装分类和分项能耗计量装置,采用远程传输等手段及时采集能耗数据,实现重点建筑能耗的在线监测和动态分析功能的硬件系统和软件系统的统称。分类能耗是根据国家机关办公建筑和大型公共建筑消耗的主要能源种类划分进行采集和整理的能耗数据,如:电、燃气、水等。
南京工业大学 2021-01-12
低能耗环保商用冷柜
中国科学院大学 2021-04-11
APSP清洁低能耗制浆工艺
研发阶段/n内容简介:APSP制浆方法是在构皮制浆(助剂法、APO两步法、HAP法等)技术成果的基础上、将HAP技术与关键设备SLG相结合的产物,称为第五代构皮制浆技术新成果。并将此技术广泛的应用扩大到木材纤维、种毛纤维、禾本科纤维、废物纤维和其他韧皮纤维等原料的一种清洁低能耗制浆新工艺、新技术和新设备。本工艺现已投产使用。APSP将传统的碱法构皮制浆技术,由落后的"五高(物耗[碱、原料]高、能耗[温度、汽压]高、水耗高、污染重、时间[保温时间]长)两低(产量[成浆得率]低、质量[原浆白度]低)"的
湖北工业大学 2021-01-12
1 2 3 4 5 6
  • ...
  • 26 27 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1