高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种异质多材料增材制造系统
本发明属于增材制造领域,并公开了一种异质多材料增材制造 系统。该系统包括关节臂机器人、打印装置、减材装置和监测反馈装 置,通过采用旋转式多喷头切换打印装置,以多个送丝打印机构旋转 切换的方式进行多材料多工艺实时切换打印,实现了多材料多工艺的 高效 3D 打印成形;双目立体视觉在线实时监测反馈装置及时反馈加工 零部件的层层温度信息及三维轮廓信息并与原始模型对比标定,确定 减材加工时机及相应减材加工参数。通过本发明,高精
华中科技大学 2021-04-14
新型半导体异质结材料
上海科技大学物质科学与技术学院教授于奕课题组与美国普渡大学研究团队合作,在新型半导体异质结研究中取得重要进展,首次成功制备并表征了二维卤化物钙钛矿横向外延异质结。相关研究成果日前在线发表于《自然》。半导体异质结精准制备是半导体器件的起点,是现代电子学和光电子学的重要基石。卤化物钙钛矿材料作为一类近年来引起广泛关注的新兴半导体,在太阳能电池、发光二极管、激光等领域展示出巨大的应用前景。在构建卤化物钙钛矿半导体异质结的道路上,有两个科学难题一直未得到解决。一方面,该材料易发生离子扩散,难以获得高质量的原子级平整的异质界面;另一方面,卤化物钙钛矿对空气、水分、电子束辐照等因素十分敏感,其微观结构解析特别是原子结构成像困难重重。缺乏原子结构信息的指导,材料的精准构筑与性能设计难以开展。于奕课题组与合作团队在这两个前沿难题的解决上取得了突破。研究人员在材料制备过程中引入刚性有机配体来抑制离子扩散,成功制备了二维有机—无机杂化卤化物钙钛矿横向异质结;发展了低剂量像差校正电子显微技术,首次揭示了二维横向异质结的界面原子结构,直接证实获得了原子级平整界面。同时,于奕团队找到了一种优化的低剂量成像方法,首次实现了辐照敏感的二维横向异质结原子结构解析。这一突破提供了界面原子结构、缺陷构型以及晶格应变等准确信息,为这类新型半导体异质结的微观结构设计提供了直观的指导。在这些研究发现的基础上,研究团队进一步合作,展示了新型异质结原型器件中的整流效应,验证了这类新型半导体走向应用的前景。相关论文信息:https://doi.org/10.1038/s41586-020-2219-7
上海科技大学 2021-04-11
基于半导体异质结概念,提出利用晶相共生现象可控合成异质结 光催化材料
基于半导体异质结概念,首次通过工艺简单,成本低廉熔融盐法合成一系列 钽酸钙基半导体异质结复合材料,发现了两元及多元半导体复合物组分及其含量 可通过改变前驱物比例简单调控,证明该异质结复合物晶相,组分变化与光催化 制氢性能有着密切关系,阐明不同钽酸钙晶相界面异质结形成促进光生电荷有效分离机制,极大地提高光催化制氢性能。
上海理工大学 2021-01-12
利用晶相共生现象可控合成异质结光催化材料
基于半导体异质结概念,首次通过工艺简单,成本低廉熔融盐法合成一系列钽酸钙基半导体异质结复合材料,发现了两元及多元半导体复合物组分及其含量可通过改变前驱物比例简单调控,证明该异质结复合物相,组分变化与光催化制氢性能有着密切关系,阐明不同钽酸钙晶相界面异质结形成促进光生电荷有效分离机制,极大地提高光催化制氢性能。
上海理工大学 2021-04-10
揭示多灶肝癌免疫异质性对免疫治疗疗效的影响
团队对12例多灶肝癌患者的45个肿瘤样本及对应癌旁正常组织进行了全基因组测序、全外显子测序及RNA测序。研究发现同一患者的大癌灶和小癌灶的基因组特征存在极大的相似性,包括相同的HBV-DNA整合位点,相似的染色体结构变异、突变特征及拷贝数变化情况,提示12例多灶肝癌患者的大癌灶和小癌灶属于肝内转移瘤。该团队进一步分析45个癌灶的免疫微环境,发现同一患者中,与大癌灶相比,小癌灶具有更多的免疫细胞浸润,免疫活性刺激因子以及预测PD-1抗体治疗疗效的干扰素相关特征在小癌灶中表达上调。免疫相关通路在小癌灶中富集,而增殖及血管生成相关通路在大癌灶中更富集。此外,大部分小癌灶呈现sia分型中的“免疫反应亚型”。这些结果表明,同一肝癌患者的小癌灶比大癌灶具有更活跃的免疫状态。     为进一步探讨不同大小的癌灶对PD-1抗体治疗是否具有不同的治疗响应,该团队对8例接受PD-1抗体治疗的多灶肝癌患者全部癌灶的免疫治疗应答情况进行评估。结果发现其中5例多灶肝癌患者的大癌灶和小癌灶对PD-1抗体治疗存在混合反应,均体现为小癌灶具有更好的免疫治疗疗效——PD-1抗体治疗后,小癌灶平均缩小46.3%,而同一病例的大癌灶平均增加14.9%。
中山大学 2021-04-13
异质复合结构对n型BiAgSeS材料热电性能的显著强化
 在可再生能源日益短缺及温室效应日趋恶劣的严峻形势下,Seebeck效应作为一种新的能源转化方式,可以有效地将日常生活及工业生产废热和不能被太阳能电池有效吸收的红外波段转化为亟需的电能,故而引起了科研工作者们的广泛关注。衡量热电材料能量转化效率的最重要的指标是其品质因子ZT(=S2σT/κ),如何提高材料的品质因子是热电科研工作者们普遍关注的问题。     由于本征的纳米析出相以及价键非简谐性(bond anharmonicity)的存在, BiAgSeS具有非常低的本征热导率κ;然而,因其过低的载流子迁移率极大地限制了其功率因子S2σ。何佳清教授课题组巧妙地将在二维薄膜中广泛运用的调制掺杂(modulation doping)技术推广到三维块体BiAgSeS材料中,使用具有不同载流子浓度的异质晶粒构建三维复合结构,从而极大地提升了该材料中的载流子迁移率,使得功率因子S2σ相对于均匀掺杂的对照样品提升了约87%,进而显著地提升了BiAgSeS材料的热电转化效率。文章结合了透射电子显微术和理论计算对在n型BiAgSeS三维块体复合材料中运用调制掺杂改进载流子迁移率的物理机制做了深入的探讨;该工作对调制掺杂技术在三维块体热电材料中的广泛运用颇具启发意义。
南方科技大学 2021-04-13
多波长激光防护玻璃材料
自激光问世以来,各种激光器在军用武器与装备、民用等领域得到了广泛的发展和应用,激光致盲武器、防空激光武器、大型激光攻击武器、激光制导、激光测距仪、激光目标指示器、激光瞄准仪、激光雷达等各种激光武器和激光军用设备在现代高科技战争中,发挥着重要的作用。其中激光致盲武器是目前各种军事装备(如飞机、坦克、舰艇)和步兵已普遍实用的一类攻击型武器,由于激光的能量
南京工业大学 2021-01-12
多稳态磁性MOF材料研究
提出引入活性客体来调控金属有机框架(MOF)体系自旋转换性能的策略,并成功地通过特定活性客体的可逆化学变化得到验证;通过引入双吡啶三氮唑阴离子配体设计组装出自旋转换温度创纪录的自旋交叉材料该研究团队最近通过精心设计,将氨基官能团引入到霍夫曼型MOF材料中,合成了首例具有HS0.0LS1.0↔HS0.25LS0.75↔HS0.5LS0.5↔HS0.75LS0.25↔HS1.0LS0.0五种自旋状态的四步自旋转变MOF材料,并通过磁性、差示扫描量热法和单晶衍射法进行了表征确认。对于HS0.25LS0.75自旋态,我们从结构上捕捉到首例具有LS-LS-LS-HS三维有序交替排列特征的磁结构。更加令人惊奇的是,通过对主客体间超分子作用的调控可以实现四步、两步和一步自旋交叉性质之间的可逆转变,为设计具有多步自旋转变的多稳态磁性材料提供了新的思路。
中山大学 2021-04-13
多品种小批量新型纳米材料
成果简介:当代化工、制药等领域正在面临深刻变革,新材料的出现,助推了这一趋势。山东大学科研团队长期致力于各种新型纳米材料的研制,获得了多个品类的新型纳米材料。 ① 新型碳纳米材料 以块体富碳材料和小分子有机化合物为原料,利用混酸回流、无溶剂热解等方法,制备了发光纳米碳;以多胺为原料,制备了超高分子量聚合物和碳纳米颗粒;以有机羧酸为原料,制备了生物相容性纳米碳。产品可用于发光二极管、荧光油墨、油田、食品等多个领域。 ② 结构精确的胶体银 以硝酸银和巯基烟酸为原料,碱性条件下制备了具有原子级精准结构的银簇,主体框架为六个银原子形成的八面体,外围被六个巯基烟酸配体保护起来。该纳米材料可溶于水,形成胶体银,具有抗菌等功效。 ③ 强吸附多孔材料 共价有机多孔材料具有比表面积大、稳定性高、可塑性强等优点。把对二氧化碳具有亲和作用的富氮基功能团引入共价有机框架材料,制备了一系列富氮基共价有机多孔材料,可选择性吸附二氧化碳。该方法可替代传统二氧化碳处理方法,即有机胺水溶液吸收法,能够降低能耗,减少环境污染。 ④ 纳米纤维素 利用酸解法,制备了纳米纤维素水分散液,品质高,性能稳定。 成果相关图片:
山东大学 2021-05-11
一种无空穴传输材料钙钛矿薄膜异质结电池的制备方法
本发明公开了一种无空穴传输材料钙钛矿薄膜异质结电池的制备方法。该方法在传统的 PbI2 前驱体 溶液中加入少量 PbCl2,以提高 PbI2 在溶剂中的溶解性,以免在旋涂时形成不均匀的晶核,影响钙钛矿 生长的均匀性。在空气中 100℃烧结 5 分钟后,往钙钛矿层上刮涂上一种含有 CH3NH3I 的碳浆,在空气 中 100℃烘干,再次刮涂上一层不含 CH3NH3I 的碳浆以降低器件电阻。最后 50mg/mL?PMMA 的甲苯溶 液均匀滴在碳电极上
武汉大学 2021-04-14
1 2 3 4 5 6
  • ...
  • 262 263 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1