高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
可用于增材制造的高强铝镁合金
铝及其合金是工程应用最广泛的结构材料之一。传统的铝合金零件通过铸造、锻造和粉末冶金等方法制造,与这些传统制造过程相关的工具设备增加了制造成本和交付周期。3D打印技术由于为制造设计提供了丰富的自由度而广泛应用于工程零件的制造。现有3D打印技术中,选择性激光熔化(SLM)是发展最为广泛的方法之一。但是SLM工艺中的冶金缺陷如许多裂纹、球化和气孔导致只有有限数量的金属适合该种工艺,且具备满足要求的密度、微观结构和强度。 中南大学粉末冶金研究院李瑞迪研究员和新西兰奥克兰大学、中车工业研究院有限公司等单位合作通过对合金元素进行调控和热处理工艺的探索,发展了一种适用于SLM制备工艺,具有良好抗裂性和高强度Al-Mg-Si-Sc-Zr合金。相关论文以题为“Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms”于4月13日在金属材料顶级期刊《Acta Materialia》在线发表。 在该项工作中,研究人员设计了一系列Al-Mg(-Si)-Sc-Zr合金,并用雾化合金粉末进行3D打印制备。在没有Si元素的情况下,Al-xMg-0.2Sc-0.1Zr(x=1.5,3.0,6.0wt.%)合金在制备过程中均易发生热裂纹,平均裂纹密度随Mg含量的增加而增大。发现在Al-6Mg-0.2Sc-0.1Zr合金中加入1.3wt%的Si能够有效地抑制SLM过程中的热裂纹,同时细化制备合金的微结构,从而提高打印试样的力学性能。 图1:不同成分的打印样品晶粒尺寸和形貌EBSD分析结果:(a)1.5 wt%Mg,合金1;(b)3.0 wt%Mg,合金2;(c)6.0 wt%Mg,合金3;(d)6.0 wt%Mg+1.3 wt%Si,合金4。晶体学取向用倒极图(IPF)表示。 图2:Mg和Si元素对试样断裂行为的影响。(a)不同合金成分(合金1,合金2,合金3,合金4)的拉应力应变曲线。(b-e)合金1(b)、合金2(c)、合金3(d)、合金4(e)的断口SEM图像。 通过对合金成分的进一步微调,研究人员设计了一种新型合金Al-8.0Mg-1.3Si-0.5Mn-0.5Sc-0.3Zr。这种新合金具有明显的细化微观组织,由亚微米胞体和胞体中存在的共晶Al3(Sc,Zr)纳米粒子(2-15nm)和粒间Al-Mg2Si共晶(Mg2Si直径10-100nm)组成。打印试样中形成了高密度的层错和独特的9R相。试样的拉伸强度和延伸率分别达到497MPa和11%。经过时效处理后,试样的拉伸强度达到550MPa,塑性在8%~17%之间。除了固溶强化、晶界强化和纳米颗粒强化外,高密度层错也有助于强化。 图3:不同组分(a1-4)合金#4;(b1-4)合金#5的SLM打印样品的细晶区TEM图像:(a1-2)合金4的胞状结构;(a3-4)合金的柱状结构;(b1-5)合金(b2)的胞状结构是(b1)的暗场图像;(b3-4)合金的柱状组织#5;图(a2),(a4),(b2)和(b4)显示了晶间共晶组织;(b5)是SLM-printed Alloy#5细胞的干HAADF图像和主要元素(Al、Mg、Si、Sc、Mn和Zr)的相应EDX图谱。 图4:(a)SLM打印合金#5时效前后的拉伸应力应变曲线。曲线“#5”表示打印合金#5;曲线“#5-HT1”表示360℃时效8h的合金#5;曲线“#5-HT2”表示300℃时效8h的合金#5。(b)在合金#5-HT2断裂处拉伸试样的透射电镜显示具有高密度位错和SFs的变形组织。(c)沿[001]方向的变形亚晶中滑移带和滑移方向的HRTEM图像。(d)在(-100)面上用(c)图中标记区域的傅里叶逆变换图像显示出高密度位错。 这项研究成果通过在原有3D打印Al-Mg-Sc-Zr合金中添加Si元素,形成了精细打印微观组织,获得了无裂纹的打印合金成分。随后通过热处理时效工艺引入高密度层错并细化晶粒,开发出了一种具有低热裂敏感性和高强度的新型铝镁合金。这项工作提供了一种解决和消除SLM工艺中的冶金缺陷的铝镁合金成分设计方法和热处理工艺,推动了SLM制造技术的工程应用。
中南大学 2021-04-11
采用纳米二氧化硅溶胶和稀土强化复合镀层的方法
近年来,具有许多特定功能的涂层和镀层在工程技术中的应用日益广泛,在材料进行表面改性与强化处理等方面显示出不可替代的重要作用。制取涂层和镀层的方法有多种,其中以利用化学或电化学方法沉积为基础的复合镀层在工程技术中得到广泛应用。复合镀层是指在镀液中加入一种或数种不溶性固体颗粒,使固体颗粒与金属离子共沉积而获得各种不同物理化学性质的镀层。早期添加的固体微粒尺寸多为微米级,复合镀层中颗粒粒度大多在1~5 范围,有些达8~10 ,而工业应用的复合镀层厚度一般为几十 左右,在这有限的厚度内只能复合几层固体颗粒,所以镀层的粒子复合量难以提高,其性能不能满足科技飞速发展的要求,应用范围受到了一定的限制。纳米材料的出现为传统复合镀技术带来了新的机遇。由于纳米颗粒具有的表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等性质,可以使复合镀层的性能更加优异。将纳米技术引入传统的复合镀而形成的纳米复合镀新技术不仅可以使产品质量产生质的飞跃,减少镀层孔隙尺寸、隔离腐蚀介质、阻止点蚀坑的长大、促进镀层的钝化过程,因而复合镀层的耐腐蚀性和耐磨损性能更好。纳米材料的高比表面积,使得表面镀层与基材的结合力更高;纳米镀层的组成颗粒极小,使得涂层表面更加均匀,有利于传热。另外,纳米技术的发展使得材料表面可进行多层膜的涂覆,实现表面的复合化。SiO 2颗粒硬度高、耐磨性好、抗腐蚀能力强,同时在高温下仍具有高强、高韧、稳定性好等特点,而且纳米SiO 2颗粒价格低廉。在镀液中添加纳米SiO 2颗粒后,可以改善镀层的硬度、耐磨性以及耐蚀性能。目前,国内外复合镀层的制备方法均采用将纳米颗粒直接添加到镀液中进行施镀,缺点是纳米颗粒易团聚,必须不停地进行机械搅拌,且效果较差。本成果针对现有技术中的不足,将含有纳米颗粒的溶胶直接加入到镀液中,纳米颗粒悬浮在溶液中,不需要搅拌,并且镀液中颗粒分散性好,不易团聚,得到的复合镀层中颗粒分布均匀,镀层性能良好,可应用于换热器、泵、轴、空冷等耐蚀或者耐磨的场合。
华东理工大学 2021-04-11
复合铁酶促活性污泥强化污水生物脱氮除磷技术
复合铁酶促活性污泥强化污水生物脱氮除磷技术从改进生物脱氮除磷活性污泥絮体结构为切入点,采用人工调控技术手段,强化铁离子在电子传递体系中电子传递作用与酶促反应的激活剂作用,提高脱氮除磷微生物的生化反应代谢活性与适应外界环境因素变化的能力,提高生物脱氮除磷效率,解决污水生物脱氮除磷系统存在的固有矛盾与瓶颈问题。       该技术不仅大大提高生化反应系统微生物活性(DHA、ETS 与 SOUR 分别提高 30%左右),而且提高了城市污水脱氮除磷效率与系统运行稳定性,与普通活性污泥生物脱氮除磷系统相比较,其生物脱氮与除磷效率分别可提高10%、25%左右,特别在解决低温硝化影响问题上具有突破性进展,系统抗低温能力得到明显增强(在反应温度 10℃条件下,系统硝化效率可以保持 70%以上,同时除磷效率达到 90%)。
青岛理工大学 2021-04-22
一种强化载氧体氧化再生的化学链燃烧空气反应器
本发明属于流化床和多相流领域,特别涉及一种强化载氧体氧化再生的化学链燃烧空气反应器;包括反应室、第一提升管、复合式内构件和第二提升管;所述反应室的侧壁设置给料口,底部设置空气入口;所述反应室和第一提升管之间采用第一渐缩管连接;所述第一提升管与第二提升管之间安装有复合式内构件;所述复合式内构件包括第二渐缩管、环形内构件、导向管、支撑板和倾斜式环形内构件;解决了现有技术中提升管内载氧体径向分布不均、氧化再生效率不高的问题,可以有效延长载氧体的停留时间,提高大粒径载氧体的氧化再生效率,从而提高化学链燃烧效率。
东南大学 2021-04-11
教育部科信司:强化国家战略科技力量 加快关键核心技术攻关
为深入贯彻落实党中央关于关键核心技术自主创新的重要部署,充分发挥高校基础研究主力军和重大科技突破策源地作用,强化高水平研究型大学建设与国家战略目标、战略任务的对接,教育部加强政策引领、优化资源配置,奔着最紧急、最急迫的问题去,加快原始创新突破和关键核心技术攻关,努力为解决“卡脖子”问题提供支撑。
教育部科信司 2022-03-18
速生木材快速强化、染色和浸香等综合改性技术及产业化
随着国家森林资源保护的进一步深入,我国木材供给结构将发生根本性转变。目前,随着完善天然林保护制度的要求,我国已全面停止天然林的商业性采伐。这导致木材资源的供需矛盾,使得未来我国国内所能提供的原料由采伐天然林向采伐人工林的历史性转变。人工林木材主要包括杉木、松木、杨木、泡桐等,具有生长速度快、产量高、采伐周期短等特点。但是其材质较差、密度及表面硬度低,其制品的尺寸稳定性差、产品性能弱、附加值低。如何利用这些低质速生材成为木材加工企业亟待解决的问题。 浙大团队能够在保留木材年轮等结构的条件下,使0.3-0.5密度的入工林木材(杨木、桐木等)强化至0.9-1.1以上(目前最高数据为1.67,但如何稳定获得产品还需进一步研究),同时均匀地染色,添加所需要的香味。用纯物理技术快速地让速生木达到高端红木的密度、强度、颜色、香味等各项特性。采用静流体超高压技术所生产的强化木是整体强化,强化后内外强度均匀,并且二次切割加工不受限,另一方面使强化后的产品内应力极低,强化后不回弹,强化品质极高。
浙江大学 2023-05-11
一种基于多智能体强化学习的运输车路径优化方法
本发明提出一种基于多智能体强化学习的运输车路径优化方法,该方法涉及智能优化技术领域,  我国AGV每年新增装机量自2010年起迅速增长,自2013年起年同比增速维持在50%以上。目前AGV产品主要集中于中低端市场,产品功能比较单一。而一些大型汽车、家电企业希望通过获得AGV系统和整机产品的相关技术,自己实现AGV产品的定制化生产。在此背景下,从AGV制造商的角度来说,要从国内严重同质化的中低端AGV产品中脱颖而出,从软件系统上提供先进的路径规划方法,并且在未来不断升级,未尝不是一种提升产品服务质量、赢得客户青睐的做法。随着硬件性能的提高和计算技术的发展,系统仿真得以在越来越短的时间之内完成,以每辆AGV为单位进行微观系统仿真可以更好地反映AGV之间的相互影响。而强化学习方法作为一种利用交互和反馈进行策略优化的机器学习方法,正好可以利用AGV交互的数据为每辆AGV规划路径,使总的生产效率或搬运效率最高,从而降低物料搬运的成本。
青岛大学 2021-04-13
一种具有强化滴状冷凝效果的非均匀超疏水涂层及其制备方法
一种具有强化滴状冷凝效果的非均匀超疏水涂层及其制备方法,通过将钛酸四丁酯和硅溶胶分别在无水乙醇中进行分散,然后将钛酸四丁酯和无水乙醇的混合溶液超声分散之后,加入到硅溶胶与无水乙醇的混合溶液中,加入氟硅烷并将溶液在50℃?65℃水浴中搅拌12h?24h,制备超疏水涂层面漆溶液;将超疏水涂层涂覆在基底上,然后通过光催化作用将TiO2表面的氟硅烷催化分解掉,而SiO2表面的氟硅烷则不能够催化分解,从而实现样品表面的亲水?超疏水表面制备。本发明的样品表面水滴冷凝脱附效率高,集水、防雾以及换热效果较好,具有较好的推广价值和应用前景。
东南大学 2021-04-11
表面活性剂增溶洗脱-强化微生物修复OCPs污染土壤的方法
本发明公开了一种表面活性剂增溶洗脱-强化微生物修复OCPs污染土壤的方法,本发明首先利用表面活性剂的增溶洗脱作用,清洗土壤一次,去除土壤中85%以上的有机氯农药(OCPs);经清洗后的土壤在工棚通风处直接堆放,利用残留的表面活性剂改善土著微生物的群落结构和活性,强化土著微生物降解土壤中残留的OCPs,最终使土壤达到环境安全标准;该技术操作简单、经济高效、绿色安全,可大规模应用于OCPs等有机污染场地/土壤的修复。
浙江大学 2021-04-11
Fe3Al基金属间化合物合金
基金属间化合物原料成本较低,具有低比重、优异的抗氧化、抗硫蚀等特点,可以应用于对强度要求不太高的中高温氧化或硫蚀环境中,如有色冶炼厂和高浓度烟气收尘设备及制酸系统中的烟气净化设备、转化器、热交换设备极板和壳体;汽车尾气管、电厂排气的烟气管道等。从1991年起,孙祖庆教授及其研究小组在国家科技部863专家委员会、国家自然科学基金委及中国-福特基金的支持下,开展了系统工作。 主要创新性研究成果有以下几点: 首次提出Fe3Al基合金的B2热机械处理工艺,使合金在空气中的室温拉伸延伸率提高到15%以上。 通过自行开发的提高合金中高温抗蠕变性能的处理工艺,研制成功Fe-28Al-XCr系金属间化合物材料。申请两项发明专利并已获得批准(专利号:ZL 93 1 14921.5)(专利号:ZL 93 1 21242.X)。 通过Cr, Ti, Mn, Ni, Mo等代位合金元素原子在Fe3Al基金属间化合物合金亚点阵占位的中子衍射研究及交互作用能计算探讨上述各元素对室温塑性的影响。Fe3Al基合金热加工过程中的变形织构研究。 在解决了该系列合金采用传统工艺制备大体积材料、并获得薄板的基础上,开展了超塑性行为、可焊性研究,并提出优化的热弯成型及焊接工艺。申请焊接发明专利一项,已公开(公开号:CN1251329A)。 Fe3Al基合金薄板在有色冶炼后处理含氧环境中的现场试验结果显示了它比不锈钢优异的抗蚀性能。通过鉴定一项。 B2结构Fe3Al单晶力学行为各向异性机理研究。不同取向单晶宏观拉伸切应力—切应变曲线形式、各阶段加工硬化行为与各滑移系的激活方式、晶体转动及位错组态的演变直接相关。 目前,有关Fe3Al基合金冶炼、热加工、焊接及组织性能控制的技术已经成熟,在普通钢铁企业现有的冶炼及轧制设备条件下,可以通过真空熔炼或非真空熔炼加电渣重熔工艺精炼来制备Fe3Al基合金铸锭,通过锻造及轧制设备生产各种规格的Fe3Al基合金板材;通过热弯工艺及焊接工艺可获得Fe3Al基合金焊管。
北京科技大学 2021-04-11
首页 上一页 1 2
  • ...
  • 27 28 29
  • ...
  • 49 50 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1