高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高防水透湿水性聚氨酯织物涂层剂
成果(技术)简介: 本技术通过分子技术合成了系列防水透湿水性聚氨酯,合成的水性聚氨酯具有高防水和拒水性,将其应用于织物涂层时,该织物涂层具有干爽、柔滑手感;在织物增重 15 g/m2 情况下,其透湿量最高已达 2310g/m2·d,耐静水压可达 2-3 万帕,与市场溶剂型防水透湿涂层胶性能相当。 项目来源:横向项目 技术领域:新材料技术 主要技术特点: 外 观 乳白 不挥发物含量(%) 25±3% 耐水压(
北京理工大学 2021-04-14
功能性水性聚氨酯纳米复合乳液制备
本项目针对水性聚氨酯膜力学性能、耐水性弱等问题,设计将纳米粘土、石墨烯、二氧化硅等化学特性与水性聚氨酯合成化学有机结合,制备水性聚氨酯纳米复合乳液。研究结果表明无机纳米材料的引入,显著提升水性聚氨酯膜(涂层)力学性能(耐磨性、耐划伤性)、耐水性、阻隔性(阻湿、阻氧性)、导电性(抗静电)等。
江南大学 2021-04-13
稀土离子4f电子云的形状研究
单分子磁体是一类具有强易轴各向异性的分子纳米磁体,可以在特定温度以下表现出磁滞等类似磁体的行为,是一种超顺磁态。分子中仅含有一个金属离子的单分子磁体通常被称为单离子磁体,近20年来,人们通常可以使用各向异性很强的稀土离子来构筑单离子磁体。稀土离子配合物往往具有较低的对称性,因此很难从几何结构上确定稀土离子的磁各向异性轴和4f电子云的结构。 北京大学化学与分子工程学院高松教授,王炳武副教授和蒋尚达副研究员等近些年设计合成了大量稀土单离子磁体,并发展了多种方法研究稀土离子的磁轴取向。2010年该课题组报道了基于双酮配体的稀土镝单离子磁体(Angew. Chem., Int. Ed., 2010, 49, 7448)。经过系统研究,蒋尚达副研究员发现在某些特殊对称性下,晶体和分子的磁各向异性轴严格重合,通过单晶转动实验确定晶体的磁化率张量,进而求得晶体和分子的各向异性轴(Jiang SD., Wang BW., Gao S. (2014) Advances in Lanthanide Single-Ion Magnets. In: Gao S. (eds) Molecular Nanomagnets and Related Phenomena. Structure and Bonding, vol 164. Springer, Berlin, Heidelberg)。2015年,蒋尚达和高松教授通过该方法首次确定了双酮类稀土单离子磁体的磁易轴取向,结果显示实验结果与量子化学从头算以及晶体场分析的结果非常接近,该工作发表在英国皇家化学会的旗舰杂志《化学科学》上(Chem. Sci., 2015, 6, 4587)。
北京大学 2021-04-11
一种荧光性聚氨酯乳液的制备方法
本发明公开了一种荧光性聚氨酯乳液的制备方法,将聚合物多元醇加热脱水处理,通入氮气冷却;加入二异氰酸酯和有机锡类催化剂反应,分别滴加或一次性加入亲水性单体、扩链剂和溶剂,反应制得带有异氰酸酯端基的聚氨酯预聚体;在聚氨酯预聚体中加入溶剂稀释后,再加入成盐剂反应形成聚氨酯离聚体;然后将聚氨酯离聚体转移到乳化桶,加入含小分子荧光材料的去离子水中进行扩链,同时加入乳化剂,高速分散下脱溶剂制得聚氨酯荧光乳液。本发明获得材料粘度较高,适用于印染、涂料、包装、皮革、塑料、食品、医药和检测等领域,具有高荧光量子产率,
安徽建筑大学 2021-01-12
聚醚/酯型热塑性聚氨酯弹性体微粒
成果(技术)简介: 聚醚/酯热塑性聚氨酯弹性体(简称 TPU),是由聚醚、聚酯、二异氰酸酯和 低分子二醇通过本体聚合方法制得。TPU 的性能介于橡胶和塑料之间,在常温下 显示出橡胶的弹性、耐磨性,而在高温下又体现了塑料的加工性能,所以 TPU 又称“弹性塑料”。它具有硬度范围广、高强度、高伸长、高耐磨、耐低温,耐霉菌、耐油和化学介质等优异 性能,使之成为合成材料领域中多才多艺的高聚物。 本技术通过溶液造球法实现了 TPU 的微粒化,可使其与其它材料均匀混合。 项目来源:
北京理工大学 2021-04-14
基于磁记忆效应的微缺陷检测技术及系统
Ø  成果简介:磁记忆检测技术是一种新型无损检测技术,被誉为二十一世纪最有前景的绿色诊断技术。该技术可以对铁磁性构件和机械零部件受损程度进行快速诊断,在检测时不要求清理金属表面和进行人工磁化等预先处理,可以完成疲劳损伤的早期诊断,寿命评估和设备可靠性诊断。可以高精度确定滋生裂纹的位置、方向以及定位已生成的裂纹。可以有效发现超声、涡流、漏磁等其它无损检测方法难以察觉的微观缺陷。该系统由探头、调理电路、计算机、信号处理软件等部分组成,可以根据需要,做成各种结构的检测装置,如多探头、单
北京理工大学 2021-01-12
基于磁记忆效应的微缺陷检测技术及系统
磁记忆检测技术是一种新型无损检测技术,被誉为二十一世纪最有前景的绿色诊断技术。该技术可以对铁磁性构件和机械零部件受损程度进行快速诊断,在检测时不要求清理金属表面和进行人工磁化等预先处理,可以完成疲劳损伤的早期诊断,寿命评估和设备可靠性诊断。可以高精度确定滋生裂纹的位置、方向以及定位已生成的裂纹。可以有效发现超声、涡流、漏磁等其它无损检测方法难以察觉的微观缺陷。该系统由探头、调理电路、计算机、信号处理软件等部分组成,可以根据需要,做成各种结构的检测装置,如多探头、单探头检测方式等,可以做成以计算机为核心的检测系统,也可以做成以单片机为核心的便携式检测系统。 磁记忆检测技术的用途极为广泛,具有很大的应用潜力和应用价值,可以用于诊断石油和天然气管道,评价各种工艺管道焊缝,诊断鼓风机和泵,进行抽油杆状态快速评价和筛选,诊断气轮机的叶片和叶轮裂纹情况等。 主要技术指标:磁场强度测量范围:+1500~-1500A/m;测量误差不超过5%,检测速度:0.2米/秒。
北京理工大学 2021-04-13
基于干涉条纹形状的二维小角度测量装置
研发阶段/n本发明公开了一种基于干涉条纹形状的二维小角度测量装置,属于精密测量技术领域。该装置包括激光器、分光镜、目标反射镜、参考反射镜和四象限接收器,目标反射镜固定在被测物体上。激光调制器对激光器发出的光束进行调制,被调制的光束经分光镜后分为两束,这两束光分别经目标反射镜和参考反射镜反射后再返回分光镜,会聚产生动态干涉条纹,当被测物体绕z轴有角度变化时,动态干涉条纹的宽度将发生变化,当被测物体绕x轴有角度变化时,动态干涉条纹的宽度和方向同时改变。动态干涉条纹用四象限光电接收器接收后转为电信号,该信
湖北工业大学 2021-01-12
耐300℃聚氨酯高强复合隔热板的制备技术
300℃复合隔热板是以聚氨酯(PU)预聚体为基体材料,以中空玻璃微球(HGM)为增强材料,并且添加催化剂等助剂制备的一类PU耐高温隔热复合材料。采用预聚体法分别制备了改变PU交联度和改变填料用量的2组PU/HGM复合材料;通过压缩实验、硬度实验、导热系数和TG-DTA测试,结果表明:当HGM用量在一定质量分数比例时,所制得复合材料压缩强度为37.42MPa,弹性模量为9.96MPa,最大压缩应变5.19%,导热系数为0.1483W/m·K,耐热性(使用温度)为220℃左右,300℃时失重率为80%。材料的综合性能最优。 中空玻璃微球(HGM)主要从粉煤燃烧后的粉煤灰中提取出的和人工合成的,原料来源广泛、价格低廉。HGM 具有诸多优良的性能,包括质轻、导热系数低和抗压能力强等。HGM 在复合材料中广泛应用,不仅可以降低复合材料的密度,而且还可以增加复合材料的力学性能、绝缘性和耐热性等性能。中空玻璃微球(HGM)主要从粉煤燃烧后的粉煤灰中提取出的和人工合成的,原料来源广泛、价格低廉。HGM 具有诸多优良的性能,包括质轻、导热系数低和抗压能力强等。HGM 在复合材料中广泛应用,不仅可以降低复合材料的密度,而且还可以增加复合材料的力学性能、绝缘性和耐热性等性能。通过HGM 对PU泡沫燃烧和力学性能的影响的实验表明,PU泡沫中仅加入HGM 对其氧指数和水平燃烧速度影响不大,但可改变其应力-应变过程:当压力低于临界值时,应变随压力增大而缓慢增加;而当压力超过临界值后,应变随压力增大而迅速增加。通过向硬质PU泡沫塑料中添加石墨和HGM,实验表明:10%(wt,质量分数,下同)的HGM、20%的石墨和70%的硬质泡沫塑料制得的复合材料具有最佳的阻燃性能,且复合材料的极限氧指数达到了30%(体积比),并得到了最大耐压强度和弹性模量。随着HGM 的含量增加,复合材料的拉伸强度增加,而其密度和溶胀比下降。密度为125kg/m3 的HGM 对低密度(54~90kg/m3)硬质泡沫塑料的性能影响,在微球含量为0.5%~5%的范围内确定微球含量对该泡沫塑料热膨胀系数、拉伸和压缩性能的影响。
北京化工大学 2021-02-01
基于磁记忆效应的微缺陷检测技术及系统(服务)
成果简介:磁记忆检测技术是一种新型无损检测技术,被誉为二十一世纪最有前景的绿色诊断技术。该技术可以对铁磁性构件和机械零部件受损程度进行快速诊断,在检测时不要求清理金属表面和进行人工磁化等预先处理,可以完成疲劳损伤的早期诊断,寿命评估和设备可靠性诊断。可以高精度确定滋生裂纹的位置、方向以及定位已生成的裂纹。可以有效发现超声、涡流、漏磁等其它无损检测方法难以察觉的微观缺陷。该系统由探头、调理电路、计算机、信号处理软件等部分组成,可以根据需要,做成各种结构的检测装置,如多探头、单探头检测方式等,可以做成
北京理工大学 2021-04-14
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 10 11 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1