高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
环境检测技术
究团队在线光电检测技术及仪器方面,主要采用光谱技术对水质进行监测,具体包括:1)采用紫外-可见光谱技术实现了水质COD和浊度的在线监测。自主开发了浸没式、小型化、一体化的采样分析的探头,探头直径仅50m,能耗低,可在野外无人值守的环境工作。该探头经过上海市计量测试技术研究院的测试,结果表明,该探头符合国家环保行业相关标准;2)采用红外光谱技术实现水体CO2含量的在线监测,为水生态环境的监测提供支撑。
上海理工大学 2021-04-10
光谱检测技术
研究团队十余年来致力于光谱检测与分析领域,研发了数件产品,持有多项发明专利,发表了多篇高水平论文。例如, 1)采用紫外-可见光谱技术实现了水质COD和浊度的在线监测。自主开发了浸没式、小型化、一体化的采样分析的探头,直径仅50 mm,能耗低,可在野外无人值守环境工作。2)采用红外光谱技术实现水体CO2含量的在线监测,分辨率高,稳定性高。目前,探头正在三峡库区进行测试。3)建立一系列基于表面增强拉曼光谱效应的新型光学免疫检测方法,发展了相关纳米光学探针和微通道芯片器件,实现了血液、唾液等体外复杂环境中肿瘤标志物(包括循环肿瘤细胞、循环肿瘤DNA、肿瘤来源外泌体表面受体分子及内含miRNA分子等)的高灵敏、高通量和快速检测。
上海理工大学 2023-05-09
一种微波快速合成-烧结制备TiNiSn热电块体材料的方法
(专利号:ZL 201510386310.6) 简介:本发明公开了一种微波快速合成‑烧结制备TiNiSn块体热电材料的方法,属于热电材料制备技术领域。本发明的一种微波快速合成‑烧结制备TiNiSn块体热电材料的方法,其步骤:原料配制和冷压成型,微波合成,TiNiSn热电合金的破碎、球磨和二次冷压成型以及微波烧结。本发明通过将微波合成与微波烧结相结合,并控制合成与烧结过程中的各种工艺参数,使TiNiSn热电材料的组织中原位析出纳米晶粒,从而显著降低TiNiSn热电材料的热导率,获得热电性能优越、组织和性能分布均匀且具有单一相的TiNiSn块体热电材料。
安徽工业大学 2021-04-11
一种医疗垃圾焚烧飞灰微波烧制多孔陶粒的方法
本发明公开了一种医疗垃圾焚烧飞灰微波烧制多孔陶粒的方法,包括如下步骤:(1)将医疗垃圾焚烧飞灰与辅料充分混合,混合物中加入少量水并经成型机造粒成型;(2)造粒成型并干燥得到颗粒生料,在颗粒生料周围填充微波耦合剂粉末;(3)将填粉后的颗粒生料进行微波烧结,烧结后冷却至常温得到多孔陶粒。本发明能够借助飞灰中高含量活性炭在微波场中的“热点”效应将飞灰中二恶英即时彻底分解,同时将大部分重金属包裹固化在烧结产物网格中,并将飞灰快速烧结成多孔陶粒,该陶粒可用于建筑集料或废水滤料,在实现医疗垃圾焚烧飞灰无害化处理的同时进一步将其资源化利用,一举多得。
天津城建大学 2021-04-11
生物质微波热化学定向转化制炭基缓释肥技术
“秸秆还田”是增加土地有机碳含量提高土地持续生产能力及节省人力物 力的有效方法。但是此法达到预期效果的时间周期长,而且容易造成耕地问题 保水性变差等一系列问题。据调查,我国仅因氮肥流失造成的损失每年在 400 亿元以上,且部分地区由于施肥不当已引起严重的环境污染。 数据显示:若将土壤有机质含量提高 1%的话,相当于土壤从空气中净吸收 了 306 亿吨 CO2。每增加 0.1 个百分点的土壤有机质含量就可释放 600-800 千克 /公顷的粮食生产潜力。如果将秸秆经过热解炭化转化为生物炭,并与化肥进行 调质处理后施用可实现两全其美。 
山东大学 2021-04-13
一种微波烧结法制备高性能铁氧体材料的方法
本发明公开了一种微波烧结法制备高性能铁氧体材料的方法,是将纳米铁氧体粉料 与烧结助剂 CuO 混合后湿球磨并干燥后得到混合料,然后向混合料中加入粘结剂聚乙烯醇, 造粒得粒料;将粒料过 200 目筛,随后以 10-30MPa 的压力常温预压得预压成型料,再将预 压成型料以 200-300MPa 的成型压力常温冷等静压成型得成型料,随后脱胶处理,然后置于 微波烧结炉中于 1000-1200℃空气中微波烧结 10-30 分钟,冷却后即得成品。本发明工艺简 单,生产周期短,具有升温速度快、加热时间短、烧结温度低、材料较大体积区域中实现零 梯度均匀加热、高效节能的特点,烧成铁氧体材料具有较佳性能,经济效益可观
安徽理工大学 2021-04-13
一种用于微波元件的建模和优化新的采样方法
人工神经网络以其对复杂非线性问题的鲁棒性和高效建模能力,在微波元件中得到了广泛的应用。现有的基于人工神经网络的微波器件模型与优化研究主要集中在建模方法上。采样是建模的基础,直接影响到人工神经网络建模和优化的效率和准确性,却很少被研究。 传统的取样方法广泛应用于基于人工神经网络的建模与优化,包括蒙特卡罗抽样和拉丁超立方体抽样。这些采样方法的重点是提高设计空间中分布样本的均匀性。由于微波元
南方科技大学 2021-04-14
一种频率及脉宽可调的微波信号生成方案
本发明公开了一种频率及脉宽可调的微波信号产生方案,基于由一个宽带光源、一个可调的差分群时延元件,一个带宽可调的光滤波器,及一个频域到时域映射模块构成的微波产生装置;微波信号产生方法为:将光源产生的宽谱光注入光谱构造模块中,使用可调的差分群时延模块及光滤波器构造目标光谱,最后利用频域到时域映射装置产生指定频率及脉宽的微波信号。本发明方法在保证了产生微波信号高频性能的基础上,实现了信号频率及脉冲宽度的可调性,增强了一般微波信号生成方法的灵活性。
西南交通大学 2016-10-19
生物质微波热化学定向转化制炭基缓释肥技术
“秸秆还田”是增加土地有机碳含量提高土地持续生产能力及节省人力物力的有效方法。但是此法达到预期效果的时间周期长,而且容易造成耕地问题保水性变差等一系列问题。据调查,我国仅因氮肥流失造成的损失每年在400亿元以上,且部分地区由于施肥不当已引起严重的环境污染。 数据显示:若将土壤有机质含量提高1%的话,相当于土壤从空气中净吸收了306亿吨CO2。每增加0.1个百分点的土壤有机质含量就可释放600-800千克/公顷的粮食生产潜力。如果将秸秆经过热解炭化转化为生
山东大学 2021-04-14
微波耦合加热移动物体的一种计算方法
1 成果简介 微波耦合加热移动物体的过程,在数学与物理的建模上,通常认为是极其复杂的过程,普通人员很难掌握,另外,模拟仿真计算还极其耗时。为解决此问题,我们利用运动的相对性原理和不同物理量(电磁场、温度场和流场)在不同坐标系之间转换,提出了一种计算微波耦合加热移动物体的数值计算方法。此法具有操作过程简易,计算精度高且耗时少的特点,理论上,此计算方法还适用于微波耦合电磁搅伴器时的加热过程计算。 2 关键技术 从物理场的角度而言,微波加热是一个典型的多物理场问题,主要涉及的是电磁场与温度场能量的转换与传导,以及流场(如周围空气)与加热物之间的共扼传热。 在现代工业与科研中,广泛应用微波加热。如《Science》和《nature》,分别在 2016 与 2018 年,刊登了利用微波制作石墨烯技术。但由于微波最大的缺陷,就是加热的不均匀性,又极大地影响了微波的应用。为了改善加热的均质性,通常使加热物运动,如旋转或采用磁搅伴器。微波治疗肿瘤,被国际医学界称为绿色疗法,肿瘤细胞死亡最可能萎缩和死亡在 42.5℃~43.5℃之间,温度低了则治疗肿瘤无效,而温度高了,又会损伤周围健康器官,由于在人体上操作,故要非常谨慎的,所以又限制了微波应用。若能有一种快速预测的计算方法,能立即得到加热的温度场分布,则是一个非常有意义的事! 针对移动物体的微波加热,传统模型计算极其复杂,只有少量专业研究人员会计算,一般人员很难掌握,同时计算又极其耗时。本方法在此方面进行了大胆的探索。 3 知识产权及项目获奖情况 发表了一篇 SCI 论文,专门论述了该方法,详见:PU GUANGYi, PU CHENG XI, J. WANG, C. F. SONG, “A method for coupled microwave heating process and heat transfer simultaneously of moving objects,” Journal of Food Processing and Preservation, vol. 42, no.1,e13468, 2018. DOI: 10.1111/jfpp.13468. 4 项目成熟度 该方法计算工作量小,计算方便,且精度高,适合加热运动物体或电磁搅拌装置,或同时加热运动物体及有电磁搅拌的情况。现在 CAD 与 CAE 技术发展非常迅速。所以,理论上可以直接利用这些商业软件进行建模与计算。 5 投资期望及应用情况; (1) 微波治疗肿瘤方面。由于微波能够穿透到肿瘤内部,直接“杀死”肿瘤细胞,理论上,远比高能射线如γ射线效果好,且对人体副作用小。先前没有广泛使用,原因之一是不好控制加热的不均匀性。若能在治疗之前,先预先计算出加热物温度场分布,即预测出温度场的分布,则可以控制微波直接“杀死”肿瘤细胞。 (2) 石墨烯的过程制作。 (3) 食品及其他工业与科研的应用。 
江南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 21 22 23
  • ...
  • 296 297 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1