高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高级臀部肌肉注射训练及对比模型XM-TB2
XM-TB2高级带警示臀部肌肉注射训练及对比模型   XM-TB2高级带警示臀部肌肉注射训练及对比模型用于臀部肌肉注射教学与训练,教会学生如何掌握正确的操作方法并避免误伤到神经血管,模型半侧透明,可以清晰地看到内部的解剖结构。   一、功能特点: ■ 模型采用高分子材料制成,肤质仿真度高。 ■ 模型为成人臀部,半边透明的设计展示臀部的肌肉组织、骨骼结构和神经血管系统,有利于在训练时进行对比,防止扎到神经和血管。 ■ 注射操作正确和进针位置正确,则有绿色灯光显示。 ■ 扎入过深或注射部位不正确,则有红色灯光闪烁和电子报警声提示。 ■ 肌内注射可注入真实液体。 ■ 可反复进行练习。   二、标准配置: ■ 臀部肌内注射操作及对比模型:1台 ■ 手提铝塑箱:1个 ■ 练习用注射器:1支 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
臀部肌肉注射与解剖结构模型XM-TB1
一、模型特点: 1、XM-TB1高级臀部肌肉注射与解剖结构模型是为进行肌肉注射而制作的,它既可以给学生在课堂上进行演示,也可以为需要者学习使用。 2、模型上有看得见并可触到的标志,他们有助于各种注射技巧的实践。 3、独特的设计和构造,使学生在直观下了解解剖结构,并能很快的掌握注射的程序。 4、这款模型将提供给学生一个很好的学习机会,帮助学生将课堂上学到的知识及时的转化到实际操作中来。 二、模型功能: 1、本模型是一个高度仿真的模型,它的皮肤和肌肉的结构,骨骼的形态和位置都是仿制真人制作的,当针头刺入组织中时,给人以真实注射的感觉。 2、模型的骨结构被深埋在躯干内,表面可以显示出近端股骨、大转子、髂前上棘、髂后上棘及骶骨,这些标志使学生能够看到并触摸到,这对识别及找到正确的注射位置有所帮助。 3、左臀部外上四分之一可卸下,便于观察确认其内部构造,臀中肌、臀大肌的肌肉、坐骨神经和血管结构等清晰可见。 4、可进行臀部肌肉注射法和股外侧肌注射法。 三、使用方法: 该注射模型可以起到教学和提高个人操作技巧的作用,它可以将你所学到的知识在很短的时间内,很容易应用到真实的病人身上,同时将病人的不适减少到最低程度。 1、臀大肌注射法: 坐骨神经穿此区域,如果学生刺到该神经或血管,会给病人带来不可弥补的伤害。这是一种最受欢迎的俯卧姿势,双足足指相对,这样使臀部肌肉松弛,将模型摆成此种位置时,可以使用“十字”定位法及联线法定出正确的注射部位来。 2、臀中肌注射法: 大多数注射都使用这种体位,因为它远离大血管和神经,它的肌肉较薄,上面的标志比较容易识别,这个位置经常应用于儿科的注射,在这个区域内注射时,病人可以处于俯卧位、侧卧位或站位,最好是应用于仰卧位,学生在找该区域时,首先找出大转子,然后将手掌放上,食指朝向髂前上棘,张开的中指指向髂嵴,食指、中指与髂肉用形成一个三角,在食指与中指之间的夹角内注射,进针方向应朝关髂嵴。 3、股外侧肌注射法: 这里少有大血管和神经,这个位置也可以儿科使用,将病人摆成仰卧位,学生可以在膝关节上10公分、髋关节下10公分之间以手掌宽度确定注射区域,此处注射为安全区域。 相关产品: 臀部肌肉注射模型 高级臀部肌肉注射训练及对比模型 高级电子臀部注射训练模型 高级褥疮护理模型-高级压疮护理模型 阶段褥疮护理模型 婴儿臀部模型 友情提示:本文中所有关于高级臀部肌肉注射与解剖结构模型http://www.xinman8.com/1146.html的文字、参数、图片等如有产品更新换代、参数变动请联系我们的销售、技术工程师。
上海欣曼科教设备有限公司 2021-08-23
XM-S2高级静脉穿刺手臂及肌肉注射模型
XM-S2高级静脉穿刺手臂及肌肉注射模型   XM-S2高级静脉穿刺手臂及肌肉注射模型(静脉输液手臂模型)的皮肤采用高分子材料、血管采用乳胶材料、手臂骨采用发泡材料制成,肤质仿真度高,皮肤纹理清晰,设有手臂肘前区和手背部的静脉血管网。   一、功能特点: ■ 手臂上分布的八条主要静脉血管系统,可进行静脉注射、输液(血)、抽血等操作练习。 ■ 上肢可旋转180度,可模仿真人手臂能转动,便于穿刺练习。 ■ 可选择不同类型的穿刺针进行训练,进针有明显的落空感,正确穿刺有回血产生。 ■ 肌内注射部位:三角肌。 ■ 皮下注射部位:三角肌下缘。 ■ 可反复进行练习。 ■ 静脉血管和皮肤可更换,经济实用。   二、标准配置: ■ 静脉输液手臂模型:1条 ■ 输液套装:1套 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
微气泡发生器及基于扩压破碎技术的船舶微气泡发生装置
本发明公开了一种微气泡发生器,包括气泡喷口、流体芯、外壳和端盖;所述的外壳或端盖上开设有进水口。流体芯呈中空梭形结构,且在横截面直径最大处环绕开设有排气孔;流体芯放置于气泡发生器外壳内;外壳一端由端盖密封,另一端为与外界相连的气泡喷口。基于扩压破碎技术的万吨级船舶微气泡发生装置,包括进水管、过滤装置、水泵、连接软管、微气泡发生器、进气管和鼓风机;进水管与水泵相连,且进水管上设有过滤装置;水泵通过连接软管与微气泡发生器的进水口相连;微气泡发生器的进气口通过进气管与鼓风机相连。本发明克服了现有气幕减阻技术中存在的难以同时满足气泡直径小和气量大以及制造成本高、制造困难的问题。
浙江大学 2021-04-11
黄土区陡坡微地形造林方法
本发明公开了一种黄土区陡坡微地形造林方法,首先划分黄土坡面的立地类型,调查研究不同立地类型的植被恢复与重建困难程度,确定对应的主要植被类型;然后在相同立地条件的坡面内,调查局部微地形的数量和特征,并根据所述微地形的不同生境条件确定所述微地形内相应的乔木和/或灌木树种;最后根据立地类型和微地形共同决定的乔木(或灌木)树种比例和位置及植物群落结构配置进行林木栽植。形成仿拟自然生态环境的乔、灌、草配置模式,适合在气候干旱、植被生长困难的黄土高原陡坡营造人工林地,人工造林较简单、存活率高、保存率高。
北京林业大学 2021-02-01
纳米微囊血液代用品
华东理工大学在国家“863”项目和上海市纳米专项项目的资助下,模拟人体天然红细胞的结构,采用四步改性复乳法工艺,以具有良好生物相容性的可降解聚合物为壳材同时包埋血红蛋白、酶,构建粒径大小为70~200nm、包封率高、高铁含量低、具有良好携氧功能的纳米微囊型血液代用品。通过协调溶剂的扩散速率与复乳液滴的纳米化过程,来调控和优化微球的粒径、包封率和表面三维结构,采用过氧化物歧化酶、过氧化氢酶、以及高铁血红蛋白强还原剂和血浆中小分子还原剂的协同效应来控制微球中高铁血红蛋白的含量。建立了微囊中高铁血红蛋白含量的控制方法,以小分子为探针,研究了微球表面物质的传递规律;以Bruno等人建立的血红蛋白血氧饱和度的经典测试方法为基础,借鉴脉冲血氧饱和度仪利用近红外光波对微球的强穿透性以及还原态血红蛋白和氧合态血红蛋白吸收光谱差值较大的特点,设计了一种可用于纳米微囊血液代用品有效性测试的无损检测方法。经检测,其携氧性能指标如P50,Hill系数等与天然血红蛋白接近,表现出优良的携氧性能。所研制的纳米微囊型血液代用品很好地克服了现有血红蛋白基血液代用品的缺点,有望为临床血液的严重短缺和战伤救治应急输血提供新的物质保证。
华东理工大学 2021-04-11
金属尾矿制备建筑微晶玻璃
该系类成果是对建筑装饰材料——微晶玻璃制备方法的创新。大大降低了微晶玻璃生产中的能耗,提高了产品的机械强度、耐久性和晶化程度。微晶玻璃制备的达到国际领先水平。成果获2012年度辽宁省科技发明一等奖,2006年度辽宁省技术发明二等奖,2001年辽宁省科技进步二等奖,并拥有金属尾矿建筑微晶玻璃的制备方法(发明专利号:ZL 2004 1 0087656.8)和金属尾矿建筑微晶玻璃及其一次烧结制备方法(发明专利号:ZL 2008 1 0012165.5)两项专利技术。
沈阳理工大学 2021-05-04
微藻培养与能源化利用
微藻可以通过自身的光合作用高效固定二氧化碳,同时生产生物燃料以及高 附加值产品,已成为国内外技术开发的热点。在微藻能源利用工艺流程中,用于 微藻培养的光生物反应器占总设备投资和运行成本的一半。由于相关研究工作的 缺乏,生物反应器受微藻光合效率、传质以及光照的限制,体积大、占地宽、成 本高、产率和效率低。为了强化微藻光生物反应器中光传递,提高光分布的均匀 性,构建了内嵌空心导光管的新型平板式微藻光生物反应器,通过空心导光管的 引入实现了将光能导入反应器中光衰减严重区域,提高了反应器内藻细胞的产量。 在此基础上,为了优化反应器的光分布,设计了内置导光板的光生物反应器,并 将其用于工业化中常用的跑道池反应器中(如图1所示),使微藻产量提到了 193. 33%,生物质产量达到2. 31g/L,油脂产量达到1258. 65mg/L。导光板目前工 艺成熟,成本低廉,对微藻无毒害作用,因此将其用于微藻产业化培养的跑道池 反应器中,基本不会增加建造及运营成本。按目前藻粉市场价来算,微藻150 元/千克,传统跑道池反应器的收益为0.18元/升,而利用内置导光板的跑道池 光生物反应器可获得0.35元/升的收益。同时,在工业化常用的管式反应器的基 础上,创新性的提出了一种新型非连续光照管式光生物反应器,通过间断遮光方 式,形成了反应器内明区和暗区的周期性分布,实现了微藻在反应器内流动时的 规律性明暗交替,从而触发闪光效应,使微藻生长速率提高了 15%。 在微藻生长到稳定期后,需对反应器中的微藻进行采收。传统的采收方式包 括离心、絮凝、气浮、膜过滤等,这些方法均耗能较多。为了降低采收成本,提出聚丙烯酸系高吸水性树脂吸收培养基浓缩微藻,吸收后可通过高温烟气脱水回 收再利用。利用采收后的湿藻进行水热液化的预处理方式,将藻细胞破壁,使细 胞内的多糖、蛋白质、油脂等析出并解聚成小分子的单糖、氨基酸、脂肪酸,之 后这些小分子物质经微生物发酵,产出甲烷、氢气等高热值的生物燃料。此外, 微藻破壁后,可直接经萃取等过程,得到硫代多糖、二十碳五烯酸(EPA)、二十 二碳六烯酸(DHA)、虾青素等高附加值产品。其中,硫代多糖具有抗氧化、抗肿 瘤、抗炎、抗病毒等活性,并且可以作为抗凝血剂和免疫调节剂。EPA被称为“血 管清道夫",能促进循环系统的健康和防止胆固醇和脂肪在动脉壁上积聚,并对 治疗由自身免疫缺陷引起的炎症有效。DHA俗称“脑黄金”,是神经系统细胞生 长及维持的一种主要成分,是大脑和视网膜的重要构成成分,在人体大脑皮层中 含量高达20%,在眼睛视网膜中所占比例最大约50%。虾青素是已知氧自由基清 除能力最强的天然色素,其抗氧化能力是维生素E的1000倍,雨生红球藻是最 佳的天然虾青素来源,含量达到3%-5%,是目前唯一被美国FDA审核准许可用于 人类直接使用的虾青素产品,我国于2010年批准纳入食品新资源产品目录。 针对微藻生物质高效能源化利用的问题,提出太阳能加热实现微藻水热预处理, 再利用水解液和固态残渣厌氧发酵制取富氢甲烷气,实现微藻全组分转化利用, 并建立了中试系统(如图2, 3)o通过太阳能水热水解,微藻发酵产甲烷过程的 速率和转化率得到显著提升。
重庆大学 2021-04-11
光子微球生物芯片技术
本技术利用光子晶体微球的颜色对待测生物分子进行编码,一种颜色的微球可以检测一种分子,与微孔板或者微流控芯片相结合,通过自动化的流体控制和光学检测完成样品中多个组分的同时检测,获得2011教育部自然科学一等奖和2014瑞士国际发明展特别金奖,同时获专利授权10余项。本技术成果包括了光子微球、微流控芯片和自动化芯片分析检测仪三部分,可以用于肿瘤、感染性疾病(HIV、SARS、肝炎、禽流感等)、心血管疾病(高血压、心脏病)检测等。希望合作研发和生产,投资规模在200万人民币左右。
东南大学 2021-04-13
中频微电流乳腺癌治疗
1 成果简介乳腺癌的发病率占女性全身各种恶性肿瘤的 7-10%,发病率位居大城市女性肿瘤的第一位,已成为最威胁女性健康的疾病,且呈逐年升高、越来越年轻化的趋势。 本成果立足于微电流能够在电极表面产生大量的氧化自由基,通过透化作用进入细胞,以及使得细胞内 Ca2+ 浓度大量增加,从而造成细胞死亡的特点,针对放疗、化疗等肿瘤治疗方法过程复杂、疗效不够理想、治疗后易复发、毒副作用大等问题,研发出利用中频交变微电流抑制乳腺癌的新方法, 所采用中频交变微电流的频率为 100-300kHz,电流大小为101-103μA,电场强度为 2-4 V/cm,相比较电化学疗法,减少了使用者的不愉快感及毒副作用;相比较陡脉冲电场的所采用的高电场强度( >10 kV/cm),使用更安全;而相比较肿瘤治疗电场需要长时间不间断治疗,作用时间更短,仅为 30 分钟,因此中频交变微电流拥有其自身特有的优势。 该方法证明: 1) 中频交变微电流可以有效地抑制体外人乳腺癌细胞株 (MCF-7) 增殖,促进细胞凋亡和坏死; 2) 中频交变微电流杀伤肿瘤细胞的可能机制为影响细胞周期,改变细胞内部结构,改变细胞外部结构使细胞表面产生电穿孔; 3) 中频交变微电流可有效地抑制荷瘤鼠皮下肿瘤的生长,且辅助化疗的效果更好; 4) 中频交变微电流无化疗明显的毒副作用,安全性好。 目前我们实验室已经完成了两代中频微电流治疗样机的研发, 样机具有双通道,频率范围为 10-500kHz,内置多种刺激模式,多种刺激波形,并且已经系统完成了细胞实验并且取得积极效果,目前正进行动物实验。 上图 样机图片 在中频微电流肿瘤治疗方面,我们是国内唯一的设备研发和实验研究团队,我们研究发现中频微电流能明显抑制乳腺癌等细胞增生和动物肿瘤生长, 对此并发表多篇 SCI 文章,在中频微电流的药物增敏作用方面也做了大量研究并取得积极成果。2 效益分析各种乳腺疾病患者比率达 52.4%,大大高于女性其他慢性常见病,其死亡率在我国妇女恶性肿瘤中位列第一,现有的乳腺癌治疗手段如手术、放疗、化疗等均存在残癌、术后并发症等问题。晚期乳腺癌出现多发转移、 放化疗效果差、 死亡率高。所以,开发新的乳腺癌治疗新技术意义重大,并且前景广阔。3 合作方式转让或者联合推广。4 项目所属行业领域医疗卫生。
清华大学 2021-04-13
首页 上一页 1 2
  • ...
  • 19 20 21
  • ...
  • 71 72 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1