高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种支持响应面估值与更新的优化流程建模方法
本发明公开了一种支持响应面估值与更新的优化流程建模方法, 包括如下步骤:使用试验设计组件获得初始设计点,将上述初始设计 点作为输入变量导入表达式组件中获取输出变量;使用响应面组件基 于上述输入变量和输出变量构造初始响应面;通过引用组件实现初始 响应面的估值计算,并计算初始响应面的最优点;将该最优点作为新 输入变量载入到表达式组件中,产生新输出变量;基于新的输入变量 和输出变量生成新响应面,实现响应面的更新;基于新响应面计算得 到新的最优点;
华中科技大学 2021-04-14
水利枢纽厂坝隔(导)墙流激振动与结构优化研究
成果的背景及主要用途:导墙或隔水墙这种轻型薄壁结构受到脉动压力的交变作用,导致结构物疲劳破坏和强烈振动的危险性,是一个现实的问题,应引起水工结构设计人员的充分重视,也是水利工程研究的一个重要课题。天津大学1996 年至 2000 年先后开展了中国长江三峡工程开发总公司委托的“三峡水利枢纽厂坝隔(导)墙泄洪振动的水弹性模型实验研究”(编号:ZT-96(1)-7)和“三峡工程厂坝隔(左导)墙的优化研究”(CT-98-22-5)的科研项目;2002 年至 2003开展了中国水电顾问集团中南勘测设计研究院委托的“向家坝水电站消力池底板和导(隔)墙结构水弹性模型试验研究”项目;2004 开展了“三峡导墙振动的原型观测研究”。通过这些项目的研究工作,对导墙结构的流激振动和结构优化开展了系统的实验研究、理论分析和原型观测,提出的创新性成果在工程中得到应用,取得了显著的社会和经济效益。 技术原理与工艺流程简介:对于导墙结构流激振动响应往往是其结构设计的控制条件,其结构的安全和结构优化设计与流激振动响应关系密切。但由于泄洪振动的复杂性,即激振源、脉动荷载时空相关和流固耦联效应的复杂性,通过单纯的水力模拟和数值计算难以正确确定导墙流激振动的响应。而采用泄洪激振的水弹性实验模拟可以很好的解决这一问题。水弹性模型是对“结构——水体——地基——动荷载”四位一体的流固振动系统的模拟,它可以同时满足“动荷载”输人系统相似和结构系统动力响应相似,即满足水力学条件和结构动力学条件相似。通过水弹性模拟实验研究导墙结构流激振动的一般规律,建立相应的理论计算模型,开展原型观测,提出导墙结构安全评价的指标以及安全监测、健康振动的理论分析方法,并通过原型观测来验证。技术水平及专利与获奖情况:该项成果达到国际先进水平。 应用前景分析及效益预测:针对三峡工程导墙从水流条件和结构静动力条件两个方面来进行三峡工程导墙泄洪振动及优化研究,研究成果已在工程建设中得到应用、实施,节省投资约 4000 万元,效益明显。 开展了向家坝水电站消力池导(隔)墙结构水弹性模型研究,优化了两个导(隔)墙体型。该研究成果对向家坝导(隔)墙的泄洪振动响应及其整体稳定性提供了科学的评价依据,为工程建设提供了一个强有力关键的技术支撑,相关成果已被设计采用。结合导墙结构原型观测,应用提出导墙流激振动的反分析方法,可为导墙安全运行监测和健康诊断提供了理论依据和技术平台,这种理论方法和技术手段对其他泄洪消能建筑物的安全监测和健康诊断、实时预警都有广泛的应用前景。该成果的理论方法也可推广到溢洪道边墙的流激振动和安全监测。 应用领域:水利水电工程设计和运行管理。 合作方式及条件:技术服务。
天津大学 2021-04-11
传统固态酿造食醋微生物功能优化关键技术及其产业应用
系统建立了传统发酵食醋酿造微生物群落及代谢组分分析技术;创新了食醋酿造微生物功能分析及高效筛选技术;构建了基于酿造微生物功能优化的制醋新技术体系,实现了产业化应用,为传统优势产业技术提升提供了基础。项目创新点 ①集成应用微生物群落分析技术,首次解析镇江香醋酿造微生物群落结构及其动态演变与发酵进程的规律; ②系统建立食醋有机酸及风味物质分析及其与酿醋微生物功能关联分析技术,首次明确了镇江香醋特征有机酸及功能物质川芎嗪的来源; ③构建了基于酿造微生物功能优化的制醋新技术体系,显著缩短了镇江香醋发酵周期,提高了原料转化率及综合产能,产品批次稳定性得到提高。 
江南大学 2021-04-11
微创血管介入手术机器人实用系统研究
项目获国家“863”计划资助。由上海交通大学附属胸科医院牵头,与中国科学院自动化研究所,燕山大学、中国人民解放军海军总医院、北京航空航天大学、北京理工大学和北京集翔多维信息技术有限公司共同完成。 心脑血管疾病是人类的第一杀手,目前的人工手术治疗存在诸多弊端,手术机器人的研究已逐步展开。本课题基于HAM(Human Adaptive Mechatronics)的概念,从人的因素、人机一体化设计、智能控制三个方面对微创血管介入手术机器人进行研究。研究内容包括定位机器人、介入装置、介入操作装置。建立我国微创血管介入手术机器人示范系统,为手术机器人的推广应用奠定基础。 技术参数: 定位机械臂:5自由度;运动部分重20kg;承重6kg; 介入装置:2自由度;重量小于4kg;轴向进给误差小于1%;定位精度1mm;轴向转动圈数任意; 介入操作装置:2自由度;重量小于4kg。 技术创新性: 定位机器人采用单报闸锁死多个关节的被动操作方式,符合手术现场需要; 介入装置能够检测导管/导丝与血管壁之间的阻力,具有独创性; 介入装置能够完成导管、导丝、球囊、支架的递送,是介入装置研究的一个突破; 介入操作装置能够根据导管介入装置检测到的导管/导丝与血管壁之间的阻力产生力反馈,操作医生具有力场感觉。
燕山大学 2021-05-04
基于微纳米气泡技术的绿色清洗装置和成套设备
微纳米气泡具有尺寸小,比表面积巨大,在水中停留时间长,表面带有负电荷等特征,微纳米气泡的界面性质使得其可以高效吸附并去除水中杂质,尤其是固体界面上的油类污染物。基于微纳米气泡的清洗技术清洗效果优异,且不使用传统的化学药剂,可以大大降低运行费用,是一项革命性的绿色清洗技术,可应用于半导体和液晶面板清洗、蔬菜残留农药清洗、空间杀菌消毒、皮肤清洁等领域。
同济大学 2021-02-01
微能量源能量收集系统超低功耗片上温度传感
一、项目简介可针对不同环境,完成震动能、压电能、摩擦电能、光电能、热能、化学能、风能、电磁能、射频信号能等能量的收集、存储,并根据需要为片上或片外低功耗传感器提供稳定且低噪的输出能量供给。此外,针对不同的传感器结构和类型进一步提供丰富的接口电路,用来读取传感器所产生的感应信号。配合低功耗收发机模块,可实现完整的无线传感节点功能。二、特点12345678.电源管理部分静态电流可低至 65nA;.整个 ASIC 功耗(包含温度传感)不足 1µW;.具有最大功率点追踪;.匹配最小 16kΩ的厘米级以下压电片.具有能量收集、存储和调整输出功能;.提供超低噪声电源供给(10nA-100µA)片上/片外传感器;.存储的能量支持 ZigBee、Bluetooth 等低功耗协议间歇数据传输;.构建平均功耗小于 5µW 的无线传感节点。三、市场情况本项目能以超低功耗实现完整无线传感节点,在 IoT、环境监测等领域有良好的应用前景和社会经济效益。四、技术成熟度此技术成熟,即将获得专利授权,寻求与企业合作。-- 28 --西安交通大学国家技术转移中心五、合作方式联合研发 技术入股 □转让授权(许可) 面议
西安交通大学 2021-04-10
金属微铸锻铣复合增材超短流程制造技术与装备
本项技术融合3D打印、半固态快锻、柔性机器人3项重大技术,将金属增材-等材-减材合三为一,实现3D打印锻态等轴细晶化、高均匀致密度、高强韧、形状复杂的金属锻件,全面提高金属制件强度、韧性、疲劳寿命及可靠性,解决锻件增材制造世界性难题。
华中科技大学 2021-04-10
pH和温度双重敏感的离子微水凝胶的制备方法
本发明涉及环境敏感型的高分子材料领域,旨在提供一种pH和温度双重敏感的离子微水凝胶的制备方法。该方法是将N-烷基丙烯酰胺类单体、含叔胺基团的双键化合物和引发剂在无水溶剂1,4-二氧六环或四氢呋喃中,无氧条件下进行自由基共聚反应;采用乙醚或石油醚为沉淀剂提取二元共聚物,经离心分离后真空干燥至恒重;将所得二元共聚物配制成水溶液,加入多卤代烷烃化合物,在40-70°C恒温搅拌;纯化后加入有机阳离子盐类化合物,室温下恒温搅拌即得pH和温度双重敏感的离子微水凝胶。该制备方法简单易控,得到的微水凝胶具有pH和温度双重敏感性,引入了聚离子液体的优良特性,纯度高、稳定性好,溶胀率大,适合在药物可控缓释和传感器等领域的应用。
浙江大学 2021-04-11
基于微纳米气泡技术的绿色清洗装置和成套设备
高校科技成果尽在科转云
复旦大学 2021-04-10
一种分子印迹固相微萃取涂层的制备方法
本技术成果属于化学分析测试仪器领域,涉及到分子印迹固相微萃取涂层的制备方法。步骤如下:石 英纤维的碱洗、酸洗、活化、硅烷化处理;模板分子与功能单体置于溶剂中自组装;加入交联剂及引发 剂,插入硅烷化石英纤维,热引发聚合;取出纤维,老化;重复以上涂渍步骤至涂层厚度达到要求;洗脱 除去模板分子。与商品化涂层相比,用本方法制备的朴草净分子印迹固相微萃取涂层对三嗪类除草剂具有 良好的分子识别性能,涂层均匀致密,为疏松多孔结构,长时间使用后无断裂、脱落现象,厚度可通过涂 渍次数进行控制,重复性好。萃取头可与液相色谱联用。
中山大学 2021-04-10
首页 上一页 1 2
  • ...
  • 71 72 73
  • ...
  • 106 107 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1