高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种高频共振式铅酸蓄电池修复装置及方法
成果提供了两种因硫化原因报废的铅酸蓄电池的修复电路系统及方法,即根据报废电池容量的人工设定值及电池损坏程度的自动检测值,修复系统可以分阶段输出相应的恒定电流与高能量系列高频谐振电流波的组合或者系统输出随时间变化而幅值减小的锯齿波组合,以此对蓄电池中各种大小的硫化铅晶体进行击碎,让其重新参加化学反应。我国铅酸蓄电池年产量达180多亿只以上,使用1~2年就报废了,在回收过程中对环境造成了严重的污染。报废的铅酸蓄电池中,小部分为物理损坏,大部分因硫化导致报废,如果对因硫化而报废的铅酸蓄电池进行活化修复,让其中60%的电池重新投入使用或延长其使用期,每年减少数千亿元以上的损失,也可创造数亿远的产值。这对于节能环保、发展低碳经济有着重要的意义,应用前景十分广阔
青岛大学 2021-04-13
供应220V残卫报警器,带蓄电池残卫紧急报警
产品详细介绍供应220V残卫报警器,带蓄电池残卫紧急报警,残卫求助警铃厂家产品名称:残卫紧急求助报警器产品型号: SN-8000-1C产品规格: 标准 残疾人按下紧急呼叫红色按钮,声光报警器立即发出警报声音,并伴有强光闪烁。工作人员听到警报声,便会赶往事发地点处理。当工作人员处理完毕,用钥匙复位紧急按钮或者手动复位,此时声光报警器停止报警。安装操作简单方便。       这种应急呼叫器是专门为老年人等特定人群“量身定做”的,主要安装在老、孕、残专用间坐便器两侧,如厕者伸手可及。呼叫器的另一端设在管理间,当专用间使用人遇到困难,按下呼叫器时,铃声便能响起,提示管理员或其他人及时给予帮助。此外,一些公共卫生间还专门设置了音响设备、儿童小便池、幼儿洗手设施等诸多人性化设施,大大方便了特殊人群如厕条件,有效改善了如厕环境。额定电压:DC12V(AC220V)材    料:ABS/PP声    压:108--120±3DB额定电流:280ma声音类别:单音产品颜色:红色/huang色/蓝色亲,你还在为家里东西被盗而烦恼吗?亲,你还在为家中冒烟,液化气泄漏而担心吗?亲,你在外地工作,还在为小孩妻子的安全方面着想吗?亲,你还在为家里的生病的老人无人照料而忧心吗?不用担心,有世宁科技, 一切都是那么简单。我公司同时大量供应门磁窗磁,烟雾报警器,燃气报警器,红外探测器,个人防护用品,商用防盗报警器材,工程建筑类报警主机,总线制主机及相关配件家用防盗报警器。销售经理: 刘生 15013775514/0755-89206127 商务Q 272820915最实用的紧急求助报警器,适用于卫生间、学校、医院、养老院等场所。直接用220V市电供电方便使用,发生紧急情况时按下紧急按钮,声光警hao通电后会发出90-120分贝的报警声及耀眼红光。供应220V残卫报警器,带蓄电池残卫紧急报警,残卫求助警铃厂家
深圳市世宁科技有限公司销售一部 2021-08-23
微电网综合规划软件
技术较为成熟,包括三个层次:理论研究已经完备成体系;核心算法开发完毕; 开发有实用的软件界面程序。该技术由王建学教授团队开发和维护,在微网研究 上具有多年积累,发表了多篇国际顶级期刊文章,软件正在不断完善中。
西安交通大学 2021-04-11
多生态能源互联微电网实验平台
研旭研制的开放式多源互联网创新实验平台以研旭多端口能源路由器为系统核心,可包容多类能源输入,具备多种产出与输运形式的“区域能源互联网”系统。具备以下特点: 1、包容多种能源资源输入,具有多种产出功能; 2、构建“互联网+”智慧能源系统的重要支撑; 3、建立多能流的状态监测和安全评估机制; 4、复杂可变的多能流网络的控制方式; 基于目前高校实验室场地和安全的考虑,南京研旭推出以小型微电网的风光储等分布式能源为基础,不断扩展和融合多种分布式能源的建设方案,可承担科技型电力电子、信息通讯、电力系统、策略调度、电能质量等科研工作。 微电网系统拓扑图: 1)直流母线、交流母线 2)光伏模拟/真实系统 3)风机模拟/真实系统 4)锂/铅酸电池储能系统 5)超级电容储能系统 6)分级负载系统 7)柴油机/充电桩 8)故障模拟系统 9)电能质量检测改善系统 10)微电网控制系统 11)能量管理调度系统 12)配电保护系统
南京研旭电气科技有限公司 2022-07-22
燃料电池微电源系统
进入 21 世纪以来,电子与信息技术获得了飞速发展,各类微小型便携式电子产品如手机、笔记本电脑、数码影像设备等相继涌现出来,给人们的生活带来了极大的便利。但是电子产品升级换代的加快和产品功能的日趋多样化,对现有微电源系统(锂离子电池、镍氢电池等)性能提出越来越高的要求,电子产品设计中的电源供需矛盾日益突出,形成所谓的“能量鸿沟”( Power Gap )。发展新的高比能电源系统已不可避免地成为突破下一代便携式电子产品发展瓶颈的紧迫任务。基于微机电系统( MEMS )技术的燃料电池微电源系统,因具有高比能、高效率、清洁环保、使用方便等突出优点而广受关注。其理论能量密度为现有锂离子电池 10 倍以上、能量效率可达 60~70% 、工作过程零排放、可瞬间完成燃料加注,是面向便携式电子产品的新一代理想替代电源。
大连理工大学 2021-04-13
微电网优化规划与运行控制关键技术及其应用
微电网优化规划与运行控制关键技术及其应用主要创新性成果如下: (1)系统地发展了含多种分布式能源、多种储能系统、可满足用户综合能源需求的复杂微电网优化规划方法,可实现微电网全生命周期的优化规划。 (2)系统地发展了适于复杂微电网多时间尺度性能研究的仿真分析方法,建成了我国第一个微电网综合物理仿真平台,为微电网运行分析、保护及控制装备研制等提供了强有力的技术支撑。 (3)系统地发展了微电网能量优化管理方法,针对不同结构与组成形式的微电网,可实现分布式电源出力
天津大学 2021-04-14
一种基于动态电价的微电网运行优化方法
本发明公开了一种基于动态电价的微电网运行优化方法,其特点是将配电网对微电网下达的参考计划交换功率曲线与微电网的计划交换功率曲线进行模糊化,计算二者的欧几里得贴近度来实现电价的动态化,建立考虑动态电价、运行维护成本和排污处理成本目标函数,采用粒子群算法求取微电网经济优化运行方案。使得微电网在运行优化过程中能够协调配电网运行,减轻微电网接入对配电网带来的影响。
四川大学 2016-10-25
基于MAS多尺度的风光波互补海岛微电网能量控制方法
本发明公开了一种基于MAS多尺度的风光波互补海岛微电网能量控制方法,采用多Agent技术,当光照、风速、海况变化导致可再生能源发电出力变化时,通过微电网源、储、荷协调控制满足海岛上军民的用电需求。与现有微电网的能量控制方法相比,该控制方法采用分布式能量管理技术,减少了波浪发电系统输出功率的不稳定性,可以获得比较稳定的总输出,在保证供电的情况下,大大减少了蓄电池数量,削减系统投资成本,提高了海岛微电网的可靠性。并且该方法充分利用了海岛上丰富的波浪能,利用海岛上的海水淡化装置实现了微电网多尺度的能量控制
东南大学 2021-04-14
一种基于模糊 PI 算法的微电网并网逆变器的控制方法
本发明公开了一种基于模糊 PI 算法的微电网并网逆变器的控制 方法。该方法包括:(1)采样当前电网电压、当前并网逆变器的输出 电流和当前滤波器的电容电流;(2)确定并网电流指令值;(3)调 整 PI 控制器的比例系数和积分系数;(4)通过修正后的 PI 控制器得 到滤波器的电容电流指令值;(5)通过 P 控制器得到并网逆变器的输出电压指令值;(6)产生控制信号控制并网逆变器开关管的通断,在 并网逆变器的功率输出端产生期望的输出电压;(7)重复(1)~(6), 使并网逆变器的输出电流始终跟踪指令值。本
华中科技大学 2021-04-14
太阳电池用增透陷波微纳结构
我国在太阳能电池领域内的整体技术水平与美国、德国、日本等发达国家相比还有相当大的差距。我国太阳能光伏技术的研究和开发工作绝大部分还处在跟踪或追赶发达国家的状态。真正属于我国光伏企业所自有的太阳能电池关键技术还不多。不少企业在国际光伏行业产品竞争中存在着由于生产技术水平低下而被淘汰的风险。 近几年来,我国第二代太阳能电池的理论和实验研究已经取得了长足性的进展,并处在一个由科研成果到产业化转变的关键阶段。但与此同时,我们也看到尽管薄膜电池在很大程度上解决了太阳能电池的成本问题,但是其效率却还相当低。本技术就是针对太阳电池的这一需求而发展的。   提高转换效率,最有效的办法是表面减反。表面减反包含两层意思,一是增透结构,即让光波从外界第一次遇到材料表面时光波从表面的反射尽可能少,二是陷波结构,即让光波在材料内部传输时光程尽可能大,从而被材料吸收的尽可能多。国际上近年对表面减反进行了诸多的探索,如L. L. Ma进行了变折射率多孔硅多层的减反表面研究,在3000-28000cm-1波段范围内实现了硅表面5%以下的反射。瑞士Paul Scherrer研究所的R.H. Morf设计了用于太阳能电池陷波的阶梯层叠的一维正弦衍射光栅结构。以上小组的研究都表明,合理设计和制备光伏材料表面的微纳周期结构,是一种非常有效地增加太阳能电池的太阳光能量利用率,大幅度提高太阳能电池的转换效率的技术方法。但以上的研究,都没有从同时考虑太阳光光波的自然光特性及宽角谱入射这两个特点入手在矢量衍射理论领域进行增透及陷波的设计。 本技术具体性能指标是: 1.硅表面自然光宽波段(300-2100nm)宽角谱(±30o)减反(R<2%) 2.陷波效率>1000%。
上海理工大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 115 116 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1