高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
维视智造BT系列双远心镜头
产品详细介绍产品简介BT系列双远心镜头是机器视觉高精度检测、精密测量的关键组件。根据型号列表,可以根据要求快速查询与之相匹配的相机,例如BT-2364代表相机的CCD尺寸最大为2/3″,其可观测到的视野大小为64x48mm。BT系列双远心镜头产品特点● 兼容高分辨率/小像元尺寸的相机,如500万像素, 2/3″的相机;● 远心度小,分辨率高,低于0.1%的畸变;● 在景深范围内没有放大倍率的变化;● 像方和物方双远心设计,光透射率高;● 标准C接口,最高可支持2/3″成像靶面工业相机。应用实例喷砂金属面字符检测 手机外壳背面字符缺陷检测 普通工业镜头拍摄效果 双远心镜头拍摄效果检测手机外壳背面字符缺陷 金属表面砂砾在光线照射下会产生漫反射光晕,影响字符和背景的对比度, 造成字符聚焦不清,增加检测难度。 平行光入射,成像不受漫反射的影响,清晰聚焦,在后期字符检测、识别时变得简易、高效。硅钢片铁芯尺寸测量 硅钢片检测  普通工业镜头拍摄效果  双远心镜头拍摄效果测量硅钢片铁芯外形尺寸 普通镜头景深太小,内边缘会产生纵向视差,影响测量精度;金属边缘会发生杂散光反射现象,产生虚影,无法精确提取轮廓边缘;在视场70%的区域和中心区域会存在1%左右的无规则畸变,会影响测量精度。无纵向和横向视差,可彻底解决视差问题;平行光入射,可避免各种杂散光反射,提高图片边缘锐度;系统畸变小于0.08%,可最大程度减小畸变对测量精度的影响。手机屏幕尺寸、瑕疵检测 手机边框检测  远心镜头检测检测手机屏幕、边框是否有划痕,测量屏幕外形尺寸。 由于手机边框反光,普通镜头无法检测到微小缺陷,双远心镜头平行光入射,检测结果不受杂散光影响。由于手机屏幕透明透光,普通镜头无法检测到细小划痕,双远心镜头平行光入射,细小特征提取对比高。 手机屏幕透明透光、边框反光,使用普通镜头进行尺寸测量,屏幕和边框的过渡区域会因二次反射形成漫反射带,造成边界提取精度不高,使用双远心镜头只有一条过渡带,测量精度高,便于后期算法处理。检测橡胶密封圈内外径尺寸 一般成像系统存在3%或以上的畸变,由其在视场边缘区域,会造成外形轮廓变形失真;同时由于景深小,拍摄图片不清晰,都影响测量精度。 双远心镜头景深大,畸变小(一般控制在0.1%以内),图片边缘清晰,测量精度高。 性能参数①物距:前端物镜到物体的距离。使用时将其设定在标准值的±3%之内可达到最佳分辨率和最低畸变。②远心度:镜头主射线的最大斜率。③景深:虽位于景深边缘的图像测量数据仍然有效,但要获得清晰的图像,应尽量采用标称景深的一半。物距、景深可根据客户具体需要进行适当调整。
陕西维视数字图像技术有限公司 2021-08-23
复杂地层钻探取心工艺技术及实验装置
项目成果/简介:复杂地层钻探取心工艺技术及实验装置,2016年,高等学校科学研究优秀成果奖技术发明奖一等奖。
中国地质大学(武汉) 2021-04-10
复杂地层钻探取心工艺技术及实验装置
科研成果:复杂地层钻探取心工艺技术及实验装置,2016年,高等学校科学研究优秀成果奖技术发明奖一等奖。
中国地质大学(武汉) 2021-02-01
心的神经支配电动模型XM-D015
XM-D015心的神经支配电动模型   XM-D015心的神经支配电动模型由微电脑集成电路控制配以灯光演示,示人体心脏的神经支配、传导和血压调节关系。   一、显示内容: ■ 感觉神经传导:心肌→脊髓后角,主动脉弓→孤束核→网状结构 ■ 交感神经传导: 脊髓侧角→颈上、中、下节 〉 →心肌(心跳快) 胸1、2、3、4节 ■ 副交感神经传导: 迷走神经脊核→ 心上支 〉 → 心肌(慢) 心下支 ■ 牵涉性痛反射途径: 心→交感干 〉 → 脊髓后角→脊髓→丘脑束→丘脑→皮质 胸内侧→脊神经 ■ 血压调节: 颈动脉弓→舌咽神经 〉 → ↗ 迷走神经脊核→心肌 主动脉弓→迷走神经 ↘ 网状结构→脊髓侧后角→心肌   二、技术参数: ■ 尺寸:51×23×86cm ■ 材质:PVC材料+木框   三、标准配置: ■ XM-D015心的神经支配电动模型:1台 ■ 电源线:1根 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
XM-D015心的神经支配电动模型
XM-D015心的神经支配电动模型   XM-D015心的神经支配电动模型由微电脑集成电路控制配以灯光演示,示人体心脏的神经支配、传导和血压调节关系。   一、显示内容: ■ 感觉神经传导:心肌→脊髓后角,主动脉弓→孤束核→网状结构 ■ 交感神经传导: 脊髓侧角→颈上、中、下节 〉 →心肌(心跳快) 胸1、2、3、4节 ■ 副交感神经传导: 迷走神经脊核→ 心上支 〉 → 心肌(慢) 心下支 ■ 牵涉性痛反射途径: 心→交感干 〉 → 脊髓后角→脊髓→丘脑束→丘脑→皮质 胸内侧→脊神经 ■ 血压调节: 颈动脉弓→舌咽神经 〉 → ↗ 迷走神经脊核→心肌 主动脉弓→迷走神经 ↘ 网状结构→脊髓侧后角→心肌   二、技术参数: ■ 尺寸:51×23×86cm ■ 材质:PVC材料+木框   三、标准配置: ■ XM-D015心的神经支配电动模型:1台 ■ 电源线:1根 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
大气监测产品
监测因子总烃、甲烷、非甲烷总烃、苯、甲苯、二甲苯等。高准确度氢火焰离子化检测器(FID)、程序控温、电子流量控制(EPC)、进口隔膜泵、进口注射阀。高稳定性自动进样,连续运行、控制连锁等。自动运行无人值守。金属除尘,稳定可靠,维护量小。数据储存时间10年以上。高兼容性兼容主流厂家辅助监测设备。采用模块化设计,可扩展多项监测参数。RS232、RS485、4~20mA、以太网数据输出接口。
山东润通科技有限公司 2021-09-02
长电 ERP 系统
南京工程学院 2021-04-13
长电 MES 系统
南京工程学院 2021-04-13
甲酸电氧化技术
近日,清华大学化学系王定胜教授、李亚栋院士领导的课题组在甲酸电氧化领域取得突破,相关工作以“负载在氮掺杂碳上的单原子Rh:一种甲酸氧化的电催化剂”(Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation)为题在《自然·纳米技术》(Nature Nanotechnology)发表。燃料电池是一种理想的能量来源,它可以以环境友好的方式将化学能转换为电能。氢氧燃料电池作为航空飞船的主要燃料,在上世纪80年代就已经得到了发展,近年来氢氧燃料电池在汽车上的应用也有了突飞猛进的提高。然而氢氧燃料电池需要用体积大且危险的高压氢气作为其燃料,这限制了氢氧燃料电池的发展。而直接甲酸燃料电池(DFAFCs)由于其体积小,毒性小,nafion@膜的穿透率低等优点,被认为是未来便携式电子设备最有前途的电源之一。在之前的研究中,负载型纳米级钯和铂通常被认为是DFAFCs的阳极反应甲酸电氧化(FOR)中最有效的催化剂,并得到了深入的研究。然而,由于FOR催化剂质量活性较低和一氧化碳抗毒性较差, DFAFCs阳极材料的发展达到了一个瓶颈,极大地阻碍了其应用。SA-Rh/CN的合成路径示意图及其表征在本工作中,研究人员使用主-客体合成策略成功地合成负载原子分散Rh的氮掺杂碳催化剂(SA-Rh/CN),发现尽管Rh纳米颗粒对甲酸氧化活性很低,但是SA-Rh/CN却具有极好的电催化性能。与最先进的催化剂Pd/C和Pt/C相比,SA-Rh/CN的质量活性分别提高了28倍和67倍。有趣的是,在CO剥离实验中,我们发现虽然纳米级Rh催化剂对CO毒性十分敏感,但是SA-Rh/CN很难吸附CO并且可以在很低的电压下氧化CO,这说明SA-Rh/CN对CO毒化几乎免疫。经过长期反应的测试后,SA-Rh/CN中的Rh原子具有抗烧结的能力,并因此在30000s的CA测试或者20000圈ADT测试后活性几乎没有改变。在组装电池的实验中,SA-Rh/CN的质量比能量密度在不同温度下分别是商业钯碳催化剂的8.8倍(30oC),14.8倍(60oC)和14.1倍(80oC),这也说明了SA-Rh/CN在DFAFCs的应用中具有很高的潜力。最后,研究者用密度泛函理论(DFT)计算了Rh单原子甲酸氧化的机理。研究者发现在SA-Rh/CN上,甲酸根路线更为有利。和Rh纳米颗粒具有较低的CO吸附能垒不一样,SA-Rh/CN上的Rh单原子吸附CO能垒较高,以及与CO的相对不利的结合,使SA-Rh/CN具有极高的CO抗毒性。这一发现将传统的甲酸电氧化催化剂的质量比活性提高了一个数量级,并且很好地解决了传统纳米催化剂的CO毒化问题。该发现有助于在燃料电池领域取得突破,并有望应用于便携式电子设备上。本论文的通讯作者是王定胜教授、李亚栋院士,清华大学博士后熊禹是本文的第一作者。本研究受到国家自然科学基金委和科技部的经费资助。论文链接:https://www.nature.com/articles/s41565-020-0665-x
清华大学 2021-04-11
验电连接杆
产品详细介绍
天津市春合体育用品有限公司(天津市春合体育用品厂) 2021-08-23
首页 上一页 1 2 3 4 5 6
  • ...
  • 85 86 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1